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ABSTRACT
Research in normative multi-agent systems has explored several
approaches to compute the norm system (set of norms) required to
make coordination possible. More recently, norm selection supposes
an already available collection of norms from which to select a
norm system to enact. A key aspect in this selection process is the
consideration of moral values together with preferences among
them, thus the selection follows the principle: the more preferred
the values promoted by a norm system, the more preferred the
norm system. Unfortunately, norm selection follows a quantitative
approach despite the qualitative nature of the information available
to the decision maker. In this paper we provide a novel qualitative
approach to norm selection by formalising the process to infer a
norm system ranking from the value preferences. We provide an
encoding of this qualitative problem into a linear program and show
that their solutions are equivalent.

CCS CONCEPTS
• Computing methodologies → Multi-agent systems; Coop-
eration and coordination;
ACM Reference Format:
Marc Serramia, Maite Lopez-Sanchez, and Juan A. Rodriguez-Aguilar. 2020.
A Qualitative Approach to Composing Value-Aligned Norm Systems. In Proc.
of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS,
9 pages.

1 INTRODUCTION
Norms can be considered as coordination mechanisms that regulate
the behaviour of individuals within a society. Research in normative
multi-agent systems (MAS) has explored several approaches to com-
pute the norm system (set of norms) required to make coordination
possible. On the one hand, bottom-up norm emergence (or conven-
tion emergence) approaches (e.g. [1, 2, 16, 19, 20]) have norms of
a MAS emerge from within the agent society at run-time. On the
other hand, top-down norm synthesis approaches (e.g. [12, 13]) ob-
tain norms through the external observation of agents’ behaviours
and their interactions’ outcomes.

Alternatively, norms have also been related to moral values
[7, 17, 18]. Instead of addressing norm synthesis, in [17, 18] we
relied on an available collection of norms from which to select a
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norm system (that is, a set of norms to enact) based on the moral
values they support. Specifically, this selection considers value
preferences and the degree of value promotion of norms and is
performed according to the following principle: the more preferred
the values promoted by a norm system, the more preferred the
norm system, or, in other words, the more value-aligned. Thus,
in this context, the decision maker aims at the selection of the
most value-aligned norm system. Besides that, the norm selection is
conceived to consider the relationships between norms (e.g. a norm
prohibiting action a is not compatible with another norm obliging
to do a and thus, they cannot belong to the same norm system).

Although novel, the norm selection in [18] follows a quanti-
tative approach despite the qualitative nature of the information
available to the decision maker. First, since this approach follows
[4], the decision maker is forced to quantify the relations between
norms and values by specifying the degrees of value promotion of
norms. This is hard to ascertain, and as noted in [15], transforming
qualitative information into numerical data is prone to errors and
biases. Second, that approach relies on building an arbitrary utility
function for values from the preferences in the value system. In
fact, as we will discuss in this paper, the utility function proposed
in [18] can bias the selection towards values being supported by a
larger number of norms to the detriment of most preferred values.

Against this background, in this paper we take a different stance.
Thus, we show that it is possible to solve the norm selection problem
faced by a decision maker while solely relying on the qualitative
information available to her, namely the relations between norms,
the preferences over values in the value system, and the relations
between norms and values.

In order to find the most value-aligned norm system, we must be
able to compare norm systems qualitatively, based on their align-
ment with the value preferences in the value system. For that, we
exploit recent, seminal work in the realm of social choice theory
[6, 8, 9] that makes possible to rank objects from a preference rela-
tion over their subsets. In short, by combining the lex-cel ranking
described in [6] with the novel anti-lex-cel ranking introduced here,
we manage to produce a ranking of norm systems. Such ranking
exploits the preferences in the value system so that the more pre-
ferred the values promoted by a norm system, the more preferred
the norm system is. Finally, based on our ranking of norm systems,
we show how to encode the norm selection problem as a linear
program (LP) so that we can solve it with the aid of state-of-the-art
LP solvers without further assumptions.

To summarise, in this paper we provide a novel qualitative ap-
proach to solve the norm selection problem originally posed in [18].
With this aim, we make the following two major contributions:



- A novel ranking that allows to qualitatively rank norm sys-
tems based on the values that they promote.

- Based on our ranking, we show how to translate our qualita-
tive optimisation problem, the norm selection problem, into
a linear program. Importantly, we prove that the optimal
solution to the resulting LP is also the optimal solution to the
problem of selecting the most value-aligned norm system.

The paper is organised as follows. Section 2 provides background
on norms, values, and order theory, the core components of our
decision-making problem and its resolution process. Section 3 poses
an informal outline of the problem we want to solve and provides a
formalisation of each of the problem’s steps of resolution (Sections
3.1, 3.2 and 3.3), once all the problem objects are formalised we
provide a formal definition of the problem (Section 3.4). Section
4 provides an encoding to solve the problem. Section 5 provides
resolutions for the running example and compares the approach
we describe to that of [18]. Finally, in Section 6 we conclude.

2 BACKGROUND
In this section we introduce the core components of our decision-
making problem. First, we define norms, their relations and the
norm net, which we borrow from [18].

2.1 Norm net
Hereafter we consider a multi-agent system composed of a set of
agents Aд, with a finite set of actions A available to them, which
can enact different roles from a set R. These roles are hierarchically
organised in H = ⟨R,⊴⟩, where ⊴ is a hierarchical relation of
subsumption (for two roles ρ, ρ ′ ∈ R, ρ ′ ⊴ ρ means ρ can subsume
the functionalities of ρ ′). Furthermore, we consider a simple, first-
order language L to describe the state of the multi-agent system.
With these definitions in place, we formalise the object of our
problem, the norm:

Def. 1 (Norm). A norm is a pair ⟨φ, θ (ρ,a)⟩, where φ is a precon-
dition in the language L, ρ ∈ R is the role of the addressee agent,
namely the agent role required to comply with the norm; a ∈ A is
the regulated action, and θ ∈ {Obl, Per , Prh} is a deontic operator.

Example 1. Say that a country has to decide the norms to apply to
its airport borders. A possible normwould be ⟨∅,Obl(all, show_passport)⟩
meaning that all agents must show their passports. Another possibility
would be a norm such as ⟨∅, Per (all, cross)⟩, permitting all agents to
cross the border.

Given a set of norms N , as noted in [18], relationships between
norms may hold. Thus, we identify norm exclusivity, substitutabil-
ity and generalisation as norm relations. Such relationships are
relations over norms, henceforth noted as Rx , Rs , and Rд respec-
tively. Two norms n,n′ aremutually exclusive, noted as (n,n′) ∈ Rx ,
when they cannot be enacted at once; they are substitutable, noted
as (n,n′) ∈ Rs , if they are interchangeable; and they have a di-
rect generalisation relation, noted as (n,n′) ∈ Rд , when n is more
general than n′. We note A(n)/S(n) the ancestors/successors of n.

By putting together norms and their relations, we characterise
the normative dimension of our decision space.

Def. 2. A norm net is a structure ⟨N ,R⟩, where N is a set of
norms and R = {Rx ,Rs ,Rд} is the set of exclusive, substitutable, and
generalisation relations.

Likewise [18], henceforth we shall refer to any subset Ω ⊆ N
as a norm system. We are interested in a particular type of norm
systems: those that contain neither conflicting nor redundant norms.
Thus, we characterise norm systems that avoid both conflicts and
redundancy as sound norm systems.

Def. 3. Given a norm net ⟨N ,R⟩, a norm system Ω ⊆ N is sound
iff it is both conflict-free and non-redundant, that is a norm system
Ω ⊆ N is sound if for each ni ,nj ∈ Ω, (ni ,nj ) < Rx ; (ni ,nj ) < Rs ;
nj < A(ni ); and ∀n, such that |S̄(n)| > 1, then S̄(n) ⊈ Ω, where S̄(n)
are the direct successors of n (S̄(n) = {n′ ∈ N , (n,n′) ∈ Rд}).

Example 2. In an airport border we consider the norm net in Figure
1. In this case, n1 permits everyone to cross the border, n2 obliges them
to show an id, n3 obliges them to show a passport, n4 obliges all
agents to pass a security check, n5 obliges them to fulfil a customs
form, and, finally, n6 obliges only foreign travellers to fulfil a customs
form while n7 only obliges it to local travellers. Note that n6 and n7
are identical to n5 but only with more particular roles (local/foreigner
instead of all), thus n5 generalises them. On the other hand, note that
n1 is mutually exclusive with n2, n3, n4, n5, n6 and n7, as crossing the
border freely cannot be enacted while demanding anything to cross
it. Finally, since n2 and n3 oblige travellers to show alternative travel
documents we consider them substitutable norms.

n2= Obl(all, 
show-id)

n5= Obl(all, 
fulfil-form)

n6= Obl(foreigner, 
fulfil-form)

n7= Obl(local, 
fulfil-form)

n1= Per(all, 
cross_border)
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Figure 1: Example of candidate norms n1, . . . ,n7 for border
control along with their relations and their promotion of
the free movement and safety values.

2.2 Rankings
While norms and norm systems are the object of study, we use
rankings as the way to define preferences. We use rankings because
it is the less restrictive preference structure satisfying totality. This
allows us to know the preferences between any pair of elements
(unlike e.g. partial orders).

Def. 4. A ranking ⪰ of X is a reflexive, transitive and total binary
relation, noted as x ⪰ y (x,y ∈ X ). Given x,y ∈ X , if x ⪰ y, we say
x is more preferred than y. If we both have x ⪰ y and y ⪰ x then we
note it as x ∼ y and say x and y are indifferently preferred. We note
as R(X ) the set of all rankings of X .



Note that, given a setX and a ranking ⪰∈ R(X ), we can consider
the quotient set X/∼ and its associated quotient order ≻, such that
Σ1 ≻ · · · ≻ Σ |N /∼| where Σi is the class of equivalence contain-
ing the i-th more preferred elements of the ranking ⪰ (that are
indifferently preferred between them).

2.3 Value System
Ethical reasoning typically involves a value system, that contains a
set of moral values, which are principles that society deems valuable.
As noted in [5], within a value system, some values are preferred to
others, and such preferences over moral values influence decision
making. Therefore, the preferences over the moral values of a value
system, together with the values themselves, have been identified
as a core component for ethical reasoning in [5, 11, 18]. Formally,

Def. 5. A value system is a pair ⟨V , ⪰⟩, where V stands for a
non-empty set of values, and ⪰ is a ranking of the moral values in V .

In [18], we argued that a norm is related to a given moral value
when the norm’s goal either promotes or demotes that value. Based
on such observation, and taking inspiration in [4], we defined a
support rate function that quantifies the support of a norm to
each value. Unlike [18] and [4], here we do not assume that such
quantitative information is available, and instead we propose that
the decision maker is just required to specify whether a norm
promotes a value or not. With this aim, we define the following
function linking norms and values:

Def. 6. Given a norm net ⟨N ,R⟩ and a value system ⟨V , ⪰⟩, we
define the value promotion function σv : N → P(V ) that for each
norm returns the subset of values the norm promotes. Because of the
norm relations in the norm net, we require this function to fulfil the
following syntactic consistency properties:

- Exclusive norms cannot share the values they support: If (n,n′)
∈ Rx , then σv (n) ∩ σv (n

′) = ∅.
- All values promoted by a norm are also promoted by the norms
that generalise it: If (n,n′) ∈ Rд , then σv (n′) ⊆ σv (n).

Furthermore, we also consider the complementary function σn :
V → P(N ) that yields the norms promoting a particular value:
(i) if σv (n) = V ′, where V ′ ⊆ V ⇒ ∀v ∈ V ′, n ∈ σn (v); and
(ii) if σn (v) = N ′, where N ′ ⊆ N ⇒∀ n ∈ N ′, v ∈ σv (n).
In norm selection, a norm that does not support any value and a
value that is not supported by any norm are irrelevant. Henceforth,
we suppose that all norms support at least one value, and that all
values are supported by at least one norm (∀v ∈ V , σn (v) , ∅ and
∀n ∈ N , σv (n) , ∅

Example 3. Following Example 2, we observe that n1 promotes
free movement (σv (n1) = {vf m }), whereas the rest of norms promote
safety (σv (n2) = σv (n3) = . . . = σv (n7) = {vsaf }), and hence
σn (vf m ) = {n1}, and σn (vsaf ) = {n2,n3,n4,n5,n6,n7}. Notice that
the image of σn is σn (V ) = {{n1}, {n2,n3,n4,n5,n6,n7}}

2.4 Lex-cel
Given a set of elements X and a ranking ⪰ of the subsets of X ,
one interesting topic is how to ground the ranking of subsets to a
ranking of elements. In this paper we use the grounding method
introduced in [6] called lex-cel. Lex-cel can be viewed as a function

le : R(P(X )) → R(X ), such that for a ranking ⪰∈ R(P(X )), le(⪰)
= ⪰д is a ranking of X . Informally we say lex-cel grounds the
preferences over subsets to preferences over elements. Although
we note it as le the process is performed as follows.

First, we consider the quotient set P(X )/∼, this way subsets
related with indifference relations will fall on the same equivalence
class Σi ∈ P(X )/∼. As we have explained in Sec. 2.2, these classes
are ordered with a quotient order ≻: Σ1 ≻ · · · ≻ Σ |P(X )/∼| .

We now define a function µ : X → N |P(X )/∼| , that for an ele-
ment x ∈ X returns its profile vector, a natural vector of dimension
|P(X )/∼ |, the number of equivalence classes in the quotient set.
The elements in the profile vector represent the number of times
x appears in the subsets of each of the equivalence classes. Thus,
supposing µ(x) = (cx1 , . . . , c

x
|P(X )/∼|

), cxi is the number of times x
appears in the subsets of the equivalence class Σi , which is the class
containing the i-th most preferred subsets of P(X ) in regard to ⪰.
Formally:

µ(x) = (cx1 , . . . c
x
|P(X )/∼|

), where cxi = |{S ∈ Σi : x ∈ S}| (1)

To compare two elements x,y ∈ X , we compare lexicographically
µ(x) and µ(y). That is:

Def. 7. We define the lexicographical order of vectors ≥L such that
given two vectors c = (c1, . . . cm ), c ′ = (c ′1, . . . c

′
m ) ∈ Nm , we say

c ≥L c ′ iff ∃i , s.t. c1 = c ′1; . . . ; ci−1 = c ′i−1 and ci > c ′i .

We then define the grounded ranking between two elements by
comparing their profile vectors. Given x,y ∈ X , we say:

x ⪰д y iff µ(x) ≥L µ(y)

x ⪯д y iff µ(x) ≤L µ(y)

x ∼д y iff µ(x) = µ(y)

In [6], the authors prove that grounding preferences with lex-cel
satisfies properties that make the grounding fair, namely neutral-
ity, coalitional anonymity, monotonicity and independence of the
worst set. Firstly, neutrality ensures that the ranking resulting from
applying lex-cel does not depend on the elements’ names/identities.
Coalitional anonymity states that a ranking between two elements
x,y should be independent of the other elements, either if x,y are
in coalitions with them or not. Lex-cel also satisfies monotonicity
because it breaks possible indifference relations in a consistent way.
Furthermore, when grounding preferences lex-cel takes into ac-
count higher ranked subsets over lower ranked ones, in fact lex-cel
does not take into account the least preferred subsets, thus we say
lex-cel is independent of the worst subsets. In [6], the authors not
only prove that lex-cel satisfies these axioms but also that is the
only grounding function to satisfy them.

3 THE MOST VALUE-ALIGNED NORM
SYSTEM SELECTION PROBLEM

Given a norm net ⟨N ,R⟩ (we assume that the norms in N are bene-
ficial candidate norms), a value system ⟨V , ⪰⟩ and a function σn ,
our goal is to detail the process to find the most value-aligned norm
system (MVANS), that is the most preferred sound norm system in
terms of the values it promotes based on the value ranking.

To find this desired norm system, in this section we detail how
to employ the value ranking in the value system to infer a ranking
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Figure 2: (Top row) Steps to build a norm system ranking. (Bottom row) Example illustrating the building of a norm system
ranking for a norm net and a value system and showing the most value-aligned sound norm system (Ω∗) highlighted in black.

of norm systems from which we can select the most preferred one
that complies with the soundness requirements. Specifically, this
section is devoted to detail the process of inferring a ranking of
norm systems from a ranking of values. The top row in Figure 2 out-
lines our process, which involves three steps (preference induction,
preference grounding, and preference lifting), which are thoroughly
detailed in Sections 3.1, 3.2, and 3.3 respectively. Before that, next
we briefly sketch those three steps. For illustrative purposes, notice
that the bottom row in Figure 2 displays the building of a ranking
of norm systems for: (i) a norm net with three norms n1, n2 and n3,
where n1 and n2 are mutually exclusive; (ii) a value systemwith two
values v1 and v2 where v1 is preferred to v2; and (iii) a norm-value
support function relating n1 with v1 and n2, n3 with v2.

The first step is preference induction, which is meant to yield
a ranking ⪰Ω of the value-supporting norm systems (that is, the
subsets in σn (V )) from the value ranking ⪰. Observe that at this
point we can only induce a ranking of the value-supporting norm
systems instead of a ranking of all norm systems. In the example in
Figure 2, we know that v1 is supported by n1 (σn (v1) = {n1}) and
v2 is supported by n2,n3 (σn (v2) = {n2,n3}). Since v1 ⪰ v2, we
induce that {n1} ⪰Ω {n2,n3}, namely {n1} is preferred to {n2,n3}.

While at this point the ranking we have is only a ranking of
some norm systems, the information to rank all norm systems is
implicit in it. We can make it explicit by first applying preference
grounding to obtain the preferences over all individual norms and
afterwards apply preference lifting to finally achieve a full norm
system ranking. This amounts to applying preference grounding
to the ranking ⪰Ω of value-supporting norm systems to produce a
ranking ⪰n of the norms inN . We do so by using the lex-cel method
[6] described in Section 2.4 , which satisfies desirable properties for
the method to be perceived as fair. Back to our example in Figure
2, the preference grounding of the ⪰Ω ranking leads to the norm
ranking n1 ⪰n n2 ∼n n3. In this case we prefer n1 over the other
norms because n1 supports v1 which is the most preferred value,
while n2 and n3 support v2 which is less preferred.

The last step is preference lifting, which lifts the ranking of
norms to a ranking ⪰∗

Ω of norm systems. In Figure 2, since the norm
ranking n1 ⪰n n2 ∼n n3 tells us that that n1 is the most preferred
norm, we will rank all norm systems containing n1 over those
norm systems that do not contain it. Additionally, given two norm
systems containing n1, we will prefer the one with more norms (as
we have assumed all norms in N to be beneficial candidate norms).

Of the norm systems not containing n1, the more preferred ones
will again be those that contain a larger number of norms.

The process of grounding preferences and then lifting them
can be viewed as a way of transforming the ranking ⪰Ω of value-
supporting norm systems into a ranking of all norm systems ⪰∗

Ω .
At this point, finding the MVANS is finding the most preferred

sound norm system in ⪰∗
Ω . In Figure 2, since n1 and n2 are mutually

exclusive, {n1,n2,n3} and {n1,n2} are not sound norm systems.
Therefore, the MVANS is {n1,n3}.

3.1 Preference induction over
value-supporting norm systems

Let V = {v1, . . .vr } be a set of values, σn (vi ) the norm system
supporting value vi , and σn (V ) = {σn (v1), . . . ,σn (vr )} the set of
norm systems supporting each value. Intuitively, if norm n supports
value v and norm n′ supports value v ′, knowing that v ⪰ v ′, we
can infer that, in terms of values, n is more preferred than n′. Since
norms support values, the ranking of values in a value system
induces a ranking of the norm systems in σn (V ). Thus, we can
define a function ind : R(V ) → R(σn (V )), such that for a value
ranking ⪰ we can infer a new ranking ind(⪰) = ⪰Ω of the subsets
in σn (V ) as follows:

v ⪰ v ′ ⇒ σn (v) ⪰Ω σn (v
′),∀v,v ′ ∈ V (2)

Example 4. In Figure 1, say that we prefer freedom of movement
over security (vf m ⪰ vsaf ). Thus, in this case, the induced ranking
is: {n1} ⪰Ω {n2,n3,n4,n5,n6,n7}.

3.2 Preference grounding over norms
We now tackle grounding the ranking of value-supporting norm
systems into a norm ranking ⪰n . We do so by using the lex-cel
approach described in [6] and explained in Section 2.4.

At this point we have used the value ranking to induce ⪰Ω

a ranking of σn (V ), but notice that as explained in Section 2.4,
lex-cel has as input a ranking of P(N ). Note though, that since
σn (V ) ⊆ P(N ), the ranking ⪰Ω can be extended as a ranking of
P(N) with uncertainty over the norm systems in P(N ) \σn (V ). To
do so we exploit lex-cel’s property of independence of the worst set
to extend the ranking ⪰Ω to a ranking of P(N ) by considering all
missing norm systems inP(N )\σn (V ) as “the worst set”. Effectively,
this trick allows us to apply lex-cel to our current ranking over
σn (V ) while not affecting its outcome as lex-cel is independent of
the uncertainty we have added to the ranking. Therefore, we extend



⪰Ω∈ R(σn (V )) to a ranking in R(P(N )) noted as ⪰extΩ . Such that
given two norm systems Ω,Ω′ ∈ P(N ), if both Ω,Ω′ ∈ σn (V ), then
their order in ⪰extΩ is the same as in ⪰Ω , but otherwise we say:

Ω ⪰extΩ Ω′ iff Ω ∈ σn (V ) and Ω′ ∈ P(N ) \ σn (V )

Ω ⪯extΩ Ω′ iff Ω ∈ P(N ) \ σn (V ) and Ω′ ∈ σn (V )

Ω ∼extΩ Ω′ iff Ω,Ω′ ∈ P(N ) \ σn (V )

We note ext(⪰Ω) = ⪰extΩ . We can now apply lex-cel to the ex-
tended ranking to obtain a norm ranking, thus le(⪰extΩ ) = ⪰n . The
lex-cel process in this case consists of the following µ function:

µ(n) = (xn1 , . . . , x
n
|P(N )/∼extΩ |

), where xni = |{S ∈ Σi : n ∈ S | (3)

Example 5. Following Example 4, and supposing the extended
ranking ⪰extΩ , we now consider the quotient set P(N )/∼extΩ , the three
equivalence classes are Σ1 = {{n1}}, Σ2 = {{n2,n3,n4,n5,n6,n7}}
and Σ3 = {Ω |Ω ∈ P(N ) \ σn (V )} with the quotient order Σ1 ≻extΩ
Σ2 ≻extΩ Σ3. We now have the vectors µ(n1) = (1, 0, 63), asn1 appears
in one (the only) norm system in the most preferred equivalence class
Σ1, does not appear in the norm system on Σ2 and appears 63 times
in Σ3, because P(N ) has 2 |N |−1 = 64 norm systems containing n1,
but n1 appears in 1 of the norm systems of σn (V ), therefore only
63 norm systems are in P(N ) \ σn (V ). On the other hand, we have
µ(n2) = . . . = µ(n7) = (0, 1, 63) as n2, . . . ,n7 do not appear on the
norm system in Σ1, they appear on one (the only) norm system in
Σ2, and appear on 63 norm systems of Σ3 (as each norm n2, . . . ,n7
appears in one norm system of σn (V )).

Now we compare two norms following the same principle as in
Section 2.4, thus we say:

n ⪰n n′ if µ(n) ≥L µ(n′)

n ⪯n n′ if µ(n) ≤L µ(n′)

n ∼n n′ if µ(n) = µ(n′)

Example 6. From Example 5, the grounded norm ranking is n1 ⪰n
n2 ∼n n3 ∼n n4 ∼n n5 ∼n n6 ∼n n7, since (1, 0, 63) ≥L (0, 1, 63).

So far, we have used the initial value ranking to induce a ranking
of σn (V ) (the value-supporting norm systems) and subsequently we
have obtained a ranking of N . We can now use the norm ranking
to obtain a norm system ranking. Once we can compare all norm
systems, we can find the most value-aligned norm system that
satisfies the soundness properties. Therefore, to obtain a ranking
of P(N ) (all norm systems of N ), in the following section we will
lift the norm ranking to a ranking of all norms systems.

3.3 Preference lifting over all norm systems
Using lex-cel we have grounded the ranking ⪰Ω of value-supporting
norm systems to a ranking ⪰n of norms. We now aim at lifting
this norm ranking to obtain a ranking ⪰∗

Ω of norm systems. Such
ranking will help us compare any two norm systems in terms of
the values each one supports. Since ⪰n is the norm ranking that we
have inferred from value preferences, in fact, the more preferred a
norm, the better its alignment with value preferences. Hence, we
will target at a lifting function that adheres to the following axioms.

First, the comparison of two norm systems should arise from the
differences on their most preferred norms. Thus, our first axiom
will require that a norm system containing a single norm {n} is

more preferred than a norm system containing any norms strictly
less preferred than n because n promotes more preferred values.

Axiom 1 (Order dominance). Given n ∈ N and the set of its
strictly less preferred norms Ln = {n′ ∈ N |n ⪰n n′ and n ≁n n′},
{n} ⪰∗

Ω Ω′, where Ω′ ⊆ Ln .

Second, adding further norms to a norm system adds more value
alignment whenever the added norms promote some value(s). This
is formally captured by our second axiom.

Axiom 2 (Size dominance). For any norm system Ω ∈ P(N ),
given n ∈ N ⇒ Ω ∪ {n} ⪰∗

Ω Ω.

In fact, our axioms are in line with lex-cel. Following lex-cel,
element a is more preferred than element b iff either: i) a appears
in a more preferred subset, while b only appears in strictly less
preferred subsets (similarly to Axiom 1); or (ii) in case both elements
appear in equally preferred subsets, the element that appears in
more subsets is actually preferred (similarly to Axiom 2).

With our axioms in mind, we base our lifting process on the
same ideas as lex-cel, but inverting input and output. Thus, next we
introduce the anti-lexicographic excellence function (anti-lex-cel),
which takes a norm ranking as input and outputs a norm system
ranking. And we design this function to satisfy Axioms 1 and 2.

To build anti-lex-cel, we start from the quotient set N /∼n . Each
equivalence class contains a set of indifferently preferred norms.
Equivalence classes in N /∼n are ordered by the quotient order
≻n . Hence, Ξ1 ≻n · · · ≻n Ξr , where r = |N /∼n | and Ξi is the
equivalence class containing the i-th most preferred norms. We
define a function η : P(N ) → Nr to count the appearances of the
norms in a norm system in each equivalence class. Thus, given
a norm system Ω ∈ P(N ), η(Ω) is a vector of size r whose i-th
component stands for the number of norms in Ω that are found in
the equivalence class Ξi . Formally:

η(Ω) = (s1, . . . , sr ), where si = |Ω ∩ Ξi | (4)

Note that, similarly to µ in Section 3.2, η(Ω) is a vector whose
elements represent how preferred the norms in Ω are: the larger the
first elements of the vector, the more preferred the norms in Ω are
(in terms of ⪰n ), and hence we can infer that the more preferred Ω
will be. This again means that ranking norm systems is equivalent
to lexicographically ordering their associated vectors as calculated
by the η function.

With those considerations, we are now ready to tackle the for-
mulation of the anti-lex-cel function ale . We define ⪰∗

Ω as the rank-
ing of norm systems in P(N ) such that given two norm systems
Ω,Ω′ ∈ P(N ), it orders them according to the following rules:

Ω ⪰∗
Ω Ω′ ⇔ η(Ω) ≥L η(Ω′)

Ω ⪯∗
Ω Ω′ ⇔ η(Ω) ≤L η(Ω′)

Ω ∼∗
Ω Ω′ ⇔ η(Ω) = η(Ω′)

(5)

After that, we formally define anti-lexicographic-excellence:

Def. 8. Given a set of norms N and a norm ranking ⪰n , we call
anti lexicographic excellence (anti-lex-cel), the lifting function ale :
R(N ) → R(P(N )), such that ale(⪰n ) = ⪰∗

Ω .

As noticed above, the anti-lex-cel function is very similar to
lex-cel though it realises the reverse process (from ranking over



elements to ranking over subsets of elements). However notice
that, since le : R(P(X )) → R(X ) is not injective (it cannot be as
|R(P(X ))| > |R(X )|), le is not invertible and therefore ale is not
the inverse of le .

We resort to our running example to illustrate anti-lex-cel lifting:

Example 7. Consider the norm ranking in Example 6. The quo-
tient set N /∼n contains the equivalence classes Ξ1 = {n1}, Ξ2 =
{n2,n3,n4,n5,n6,n7}, with Ξ1 ≻n Ξ2. We can now compute η for all
norm systems to subsequently determine their ranking. Since detailing
the whole ranking would be lengthy, we show how to compute the
preference between the following norm systems: {n1}, {n1,n2,n4},
{n2,n4,n5}, {n3,n4,n5}. We first compute their η vectors: η({n1}) =
(1, 0);η({n1,n2,n4}) = (1, 2);η({n2,n4,n5}) = (0, 3);η({n3,n4,n5}) =
(0, 3). Since (1, 2) ≥L (1, 0) ≥L (0, 3), the resulting norm system rank-
ing is: {n1,n2,n4} ⪰∗

Ω {n1} ⪰∗
Ω {n2,n4,n5} ∼∗

Ω {n3,n4,n5}.

At this point, we have formalised a way of transforming the
original value ranking in the value system into a ranking over all
norm systems. It remains to show that the ranking proudced by
anti-lex-cel ale(⪰n ) = ⪰∗

Ω does satisfy Axioms 1 and 2.

Theorem 1. Given a ranking ⪰n∈ R(N ), the ranking ale(⪰n ) =
⪰∗
Ω∈ R(P(N ) follows Axioms 1 and 2.

Proof. 1. The proof is straightforward considering that Ω ⪰∗
Ω

Ω′ ⇔ (|Ω ∩ Ξ1 |, . . . , |Ω ∩ Ξ |N /∼n | |) ≥L (|Ω′ ∩ Ξ1 |, . . . , |Ω′ ∩

Ξ |N /∼n | |). Thus, Axiom 1 follows from (0, . . . , 0, 1, 0, . . . , 0) ≥L (0, . . . ,
0, 0, |Xii+1 |, . . . , |Xi |N /∼n | |). Axiom 2 follows from (|(Ω ∪ {n}) ∩
Ξ1 |, . . . , |(Ω ∪ {n}) ∩ Ξ |N /∼n | |) ≥L (|Ω ∩ Ξ1 |, . . . , |Ω ∩ Ξ |N /∼n | |),
since for given position i |(Ω ∪ {n}) ∩ Ξi | = |Ω ∩ Ξi | + 1. □

3.4 Formalising the problem
At this point, we have learnt how to yield a ranking ⪰∗

Ω of all norm
systems. Therefore, we are ready to provide a formal definition of
the problem of finding the most value-aligned norm system:

Problem 1 (Most value-aligned norm system selection prob-
lem (MVANSP)). Given a norm net ⟨N ,R⟩ a value system ⟨V , ⪰⟩
and the value promoting norms function σn , the most valued-aligned
norm system selection problem (MVANSP) is that of finding a sound
norm system Ω∗ ⊆ N such that Ω∗ ⪰∗

Ω Ω for any other sound norm
system Ω ⊆ N and the ranking ale(le(ext(ind(⪰)))) = ⪰∗

Ω .

4 SOLVING THE MOST VALUE-ALIGNED
NORM SYSTEM SELECTION PROBLEM

Solving Problem 1 turns out to be rather costly. There are two alter-
native ways wemight consider. On the one hand, wemight compute
Eq. 4 for all the norm systems in N in O(2 |N |) to subsequently or-
der them following Eq. 5, which requires O(2 |N | · loд(2 |N |)) in the
average case (O(2 |N |) worst case). On the other hand, we might
alternatively consider to only compute Eq. 4 for sound norm sys-
tems, but this requires to check the soundness of all norm systems
with O(2 |N |). Therefore, notice that both ways are exponential on
the number of norms, hence hindering applicability (just consider
solving problems involving hundreds or even thousands of norms!).

In what follows, we will show how to solve the MVANSP while
avoiding the cost of building explicitly the ⪰∗

Ω ranking. In particular,
we propose to encode it as a linear program (LP) so that it can be

solved with the aid of off-the-shelf LP solvers. Importantly, we
prove that the proposed encoding adheres to the ⪰∗

Ω ranking, and
that the solution to our LP is equivalent to that of Problem 1.

Let Ω ⊆ N be a set of norms, consider η(Ω) = (cΩ1 , . . . , c
Ω
r ),

where cΩi = |Ω ∩ Ξi | and r = |N /∼n |, we compute the value
alignment of norm system Ω as follows:

al(Ω) =
r∑
i=1

|Ω ∩ Ξi |(
r∑

j=i+1
al(Ξj ) + 1), where al(Ξr ) = |Ξr |. (6)

Notice that by applying equation 6, we can compute the value
alignment of class Ξi : al(Ξi ) = |Ξi |(

∑r
j=i+1 al(Ξj ) + 1). Hence, the

value alignments of the classes in quotient order Ξ1 ≻n · · · ≻n
Ξr can be computed recursively starting from Ξr . Note also that
al(Ω) ≥ 0, and al(Ω) ∈ N for any norm system Ω.

Our value alignment function al embodies the norm system
ranking ⪰∗

Ω , as we will formally prove later through a theorem.
Before that, we need some results that help us in the proof of the
theorem. The first lemma tells us how to alternatively compute the
value alignment of a norm system.

Lemma 1. al(Ω) =
∑r
w=1 al(Ω ∩ Ξw )

Proof. 2. By applying equation 6 we obtain the value align-
ment of an equivalence class Ξw as al(Ω ∩ Ξw ) =

∑r
i=1 |Ω ∩ Ξw ∩

Ξi |(
∑r
j=i+1 al(Ξj )+1)= |Ω∩Ξw |(

∑r
j=w+1 al(Ξj )+1). Since all equiv-

alence classes are disjoint, it follows that |Ω ∩ Ξw ∩ Ξi | = |∅| = 0
when i , w and |Ω ∩ Ξw ∩ Ξi | = |Ω ∩ Ξw |, when i = w . Now∑r
w=1 al(Ω ∩ Ξw ) =

∑r
w=1

∑r
i=1 |Ω ∩ Ξw ∩ Ξi |(

∑r
j=i+1 al(Ξj ) + 1)

=
∑r
w=1 |Ω ∩ Ξw |(

∑r
j=w+1 al(Ξj ) + 1) = al(Ω). □

And the second lemma bounds al(Ω ∩ Ξw ):

Lemma 2. ∀w,al(Ξw ) ≥ al(Ω ∩ Ξw )

Proof. 3. Since all equivalence classes are disjoint, from equation
6 we have that al(Ξw ) = |Ξw |(

∑r
j=w+1 al(Ξj )+1) and al(Ω∩Ξw ) =

|Ω∩Ξw |(
∑r
j=w+1 al(Ξj )+1). Since |Ξw | ≥ |Ω∩Ξw |, then al(Ξw ) ≥

al(Ω ∩ Ξw ). □

Now we can state the theorem that shows that the value align-
ment function embodies the ⪰∗

Ω ranking.

Theorem 2. Given two norm systems Ω,Ω′ ∈ P(N ), Ω ⪰∗
Ω Ω′

⇔ al(Ω) ≥ al(Ω′).

Proof. 4. We divide the proof into three steps. First we prove the
necessary and sufficient conditions, and we subsequently show that
such proofs suffice to prove the theorem.

Ω ≻∗
Ω Ω′ ⇒ al(Ω) > al(Ω′): Say that Ω ≻∗

Ω Ω′. From Equation 5,

we have that Ω ≻∗
Ω Ω′ ⇔ η(Ω) >L η(Ω′). By using the definition

of η in Equation 4 we can write η(Ω) >L η(Ω′) as (cΩ1 , . . . c
Ω
r ) >L

(cΩ
′

1 , . . . c
Ω′

r ) (where cΩi = |Ω ∩ Ξi | and cΩ
′

i = |Ω′ ∩ Ξi | ∀i). Now,
by using the formalisation of the lexicographical order (see Defi-
nition 7), we have that (cΩ1 , . . . c

Ω
r ) >L (cΩ

′

1 , . . . c
Ω′

r ), which im-
plies that ∃k ∈ {1, . . . , r }, s.t. ∀t < k, cΩt = cΩ

′

t and cΩk > cΩ
′

k .
In other words, ∃k ∈ {1, . . . , r } s.t. |Ω ∩ Ξk | > |Ω′ ∩ Ξk | and
∀t < k, |Ω∩Ξt | = |Ω′∩Ξt | and therefore al(Ω∩Ξt ) = al(Ω′∩Ξt ).

Next we prove that al(Ω) > al(Ω′). First, note that by considering
Lemma 1, we have that al(Ω) =

∑k−1
i=1 al(Ω ∩Ξi )+

∑r
i=k al(Ω ∩Ξi )



≥
∑k−1
i=1 al(Ω∩Ξi )+al(Ω∩Ξk ) and applying Lemma 1 and Lemma

2 we have that al(Ω′) =
∑k−1
i=1 al(Ω′ ∩ Ξi ) +

∑r
i=k al(Ω

′ ∩ Ξi ) ≤∑k−1
i=1 al(Ω′∩Ξi )+al(Ω

′∩Ξk )+
∑r
i=k+1 al(Ξi ). Therefore, to prove

that al(Ω) > al(Ω′) it suffices to prove that
∑k−1
i=1 al(Ω ∩ Ξi ) +

al(Ω∩Ξk ) >
∑k−1
i=1 al(Ω′∩Ξi )+al(Ω

′∩Ξk )+
∑r
i=k+1 al(Ξi ). This is

equivalent to show that al(Ω∩Ξk )−al(Ω
′∩Ξk )−

∑r
i=k+1 al(Ξi ) > 0.

Now, using Equation 6, al(Ω∩Ξk )−al(Ω
′∩Ξk )−

∑r
i=k+1 al(Ξi ) =

|Ω∩Ξk |(
∑r
j=k+1 al(Ξj )+1)−|Ω′∩Ξk |(

∑r
j=k+1 al(Ξj )+1)−

∑r
i=k+1

al(Ξi ) = (|Ω∩Ξk | − |Ω′∩Ξk |)(
∑r
j=k+1 al(Ξj )+ 1)−

∑r
i=k+1 al(Ξi ).

As shown above, we know that |Ω ∩ Ξk | > |Ω′ ∩ Ξk |. From that,
and since these sets’ cardinalities are natural numbers, we obtain
the following lower bound: |Ω ∩ Ξk | − |Ω′ ∩ Ξk | ≥ 1. Therefore,
(|Ω ∩ Ξk | − |Ω′ ∩ Ξk |)(

∑r
j=k+1 al(Ξj ) + 1) −

∑r
i=k+1 al(Ξi )) ≥∑r

j=k+1 al(Ξj ) + 1 −
∑r
i=k+1 al(Ξi )) = 1 > 0.

Recall that we assumed that Ω ≻∗
Ω Ω′. Since we have managed

to prove that Ω ≻∗
Ω Ω′ implies that al(Ω ∩ Ξk ) − al(Ω′ ∩ Ξk ) −∑r

i=k+1 al(Ξi ) > 0, which in turn implies that al(Ω) > al(Ω′), then
it is clear that Ω ≻∗

Ω Ω′ ⇒ al(Ω) > al(Ω′).

Ω ≻∗
Ω Ω′ ⇐ al(Ω) > al(Ω′): Assume thatal(Ω) > al(Ω′) andΩ ⊁∗

Ω

Ω′. If Ω ≺∗
Ω Ω′, then we have already shown above that al(Ω) <

al(Ω′), which contradicts our initial assumption. If Ω ∼∗
Ω Ω′, then

η(Ω) = η(Ω′), which means that (cΩ1 , . . . , c
Ω
r ) = (cΩ

′

1 , . . . , c
Ω′

r ), and
therefore ∀i cΩi = c

Ω′

i . This means that ∀i |Ω∩Ξi | = |Ω∩Ξi |, which
implies that al(Ω) =

∑r
i=1 |Ω∩Ξi |(

∑r
j=i+1 al(Ξj )+1) =

∑r
i=1 |Ω

′∩

Ξi |(
∑r
j=i+1 al(Ξj ) + 1) = al(Ω′). The fact that al(Ω) = al(Ω′) also

contradicts our initial assumption al(Ω) > al(Ω′). Thus, we conclude
that al(Ω) > al(Ω′) ⇒ Ω ≻∗

Ω Ω′.

Ω ≻∗
Ω Ω′ ⇔ al(Ω) > al(Ω′) suffices to prove the theorem: Note that

we have proved that Ω ≻∗
Ω Ω′ ⇔ al(Ω) > al(Ω′), then it triv-

ially follows that Ω ≺∗
Ω Ω′ ⇔ al(Ω) < al(Ω′). And these two

cases imply that Ω ∼∗
Ω Ω′ ⇔ al(Ω) = al(Ω′). Finally, Ω ≻∗

Ω Ω′

⇔ al(Ω) > al(Ω′) and Ω ∼∗
Ω Ω′ ⇔ al(Ω) = al(Ω′) imply that

Ω ⪰∗
Ω Ω′ ⇔ al(Ω) ≥ al(Ω′), which ends the proof of the theorem. □

Since the value alignment function embodies the ⪰∗
Ω ranking,

we can cast the most value-aligned norm system selection problem
as an optimisation problem to maximise value alignment as follows.

Problem 2. Given a norm net ⟨N ,R⟩, a value system ⟨V , ⪰⟩, and
the value alignment function al , the problem of finding the sound
norm system with maximum value alignment amounts to solving:

Ωmax = arg max
Ω∈P(N ), Ω sound

al(Ω) (7)

In order to solve the optimisation problem defined by Prob-
lem 2, we will encode it as a linear program (LP). The first step
is to build the objective function of the LP. The challenge here
is to compactly represent norm systems. Notice that for N =

{n1,n2,n3}, norm system Ω = {n1,n2} can be represented as
{n1,n2,¬n3}, or as a binary vector (1, 1, 0). In general, any norm sys-
tem Ω can be encoded as a vector (x1, . . . , x |N |), where xi ∈ {0, 1}
is the decision variable for norm ni ∈ N : if xi = 1 means that
norm ni is in Ω, while xi = 0 means ni is not in Ω. Using the
(x1, . . . , x |N |) encoding for norm systems and following equation

6, in general we can obtain the value alignment of a norm system as∑r
i=1(

∑
nw ∈Ξi xw )(

∑r
j=i+1 al(Ξj ) + 1), making use of the fact that

|Ω ∩ Ξi | =
∑
nw ∈Ξi xw . Therefore, solving Problem 2 amounts to

finding the assignment of variables (x1, . . . , x |N |) representing a
sound norm system with maximum value alignment. For that, we
propose to solve the following LP:

max
r∑
i=1

(
∑

nw ∈Ξi

xw )(

r∑
j=i+1

al(Ξj ) + 1) (8)

We require that the selected norm system complies with the
sound norm system properties. Thus, we translate the requirements
in Definition 3 into the following constraints:

- Mutually exclusive (incompatible) norms cannot be selected
at once:

xi + x j ≤ 1 for each (ni ,nj ) ∈ Rx (9)

- Substitutable norms cannot be jointly selected as these norms
are interchangable:

xi + x j ≤ 1 for each (ni ,nj ) ∈ Rs (10)

- A norm cannot be simultaneously selected with any of its
ancestors:

xi + xk ≤ 1 for each nk ∈ A(ni ) 1 ≤ i ≤ |N | (11)

- If a norm has more than one direct successor (we note S̄(n) =
{n′ ∈ N , (n,n′) ∈ Rд}), these direct successors cannot be
simultaneously selected:

If |S̄(n)| > 1 then
∑

nj ∈S̄ (n)

x j < |S̄(n)| for each n ∈ N (12)

Observe that our LP employs |N | decision variables and avoids
the expensive, explicit computation of the norm system ranking
required by the preference lifting process.

Note that in this section we have posed our norm selection
problem as a (quantitative) optimisation problem, while in Section
3 we defined the most value-aligned norm system selection problem
as a qualitative optimisation problem. Hence, now we have to prove
that both approaches yield equivalent solutions.

Theorem 3. Given a norm net ⟨N ,R⟩ and a value system ⟨V , ⪰⟩,
the solution to the most value-aligned norm system selection problem
(Ω∗) and the solution to the problem of finding the norm system
with maximum value alignment (Ωmax ) are the same, namely Ω∗ =

Ωmax . In case the solution is not unique, then Ω∗ ∼∗
Ω Ωmax .

Proof. 5. From Theorem 2, we know that ∀Ω,Ω′ ∈ P(N ), Ω′ ⪰∗
Ω

Ω⇔ al(Ω∗) ≥ al(Ω). Since Ω∗ is the most value-aligned sound norm
system, we have that ∀Ω′ sound, Ω∗ ⪰∗

Ω Ω′ ⇔ al(Ω∗) ≥ al(Ω′).
Hence, Ω∗ is a sound norm system of maximum value alignment,
which is exactly the definition of Ωmax (Equation 7). Thus, if the
solution is unique Ω∗ = Ωmax , and if it is not unique we have that
al(Ω) = al(Ω′) ⇔ Ω∗ ∼∗

Ω Ωmax as a consequence of Theorem 2. □

Having shown that the solution of Problem 1 and Problem 2 are
equivalent we now tackle the resolution of our running example:

Example 8. Examples 2, 3, 4, 5, 6 and 7 detail how to build a
norm system ranking. Note though, that even in this case with only
7 norms, the number of norm systems to rank is 27 = 128. Next we



provide the LP encoding for our running example. First, we will build
our objective function. Since the quotient order is Ξ1 ≻n Ξ2, we first
compute al(Ξ2) = |Ξ2 | = 6 (because Ξ2 = {n2,n3,n4,n5,n6,n7});
and from that al(Ξ1) = |Ξ2 | · (al(Ξ2) + 1) = 7 (because Ξ1 = {n1}).
Therefore, the objective function (following Equation 8) is max 7x1 +
x2 + x3 + x4 + x5 + x6 + x7. Since the norms of our running example
have some relations between them, as shown in Figure 1, we consider
the following constraints:

- Regarding exclusive norms:x1+x2 ≤ 1,x1+x3 ≤ 1,x1+x4 ≤ 1,
x1 + x5 ≤ 1, x1 + x6 ≤ 1 and x1 + x7 ≤ 1.

- Regarding substitutable norms: x2 + x3 ≤ 1.
- Regarding the relation between successors and ancestors: x5 +
x6 ≤ 1 and x5 + x7 ≤ 1.

- Finally, for direct successors we have to constrain: x6 + x7 < 2.

With this encoding the solution to the LP, the most value-aligned
norm system, is {n1}. Note though that Example 7 showed that
{n1,n2,n4} ⪰∗

Ω {n1}, but since {n1,n2,n4} is not sound (because
n1 and n2 (or n4) are mutually exclusive), it is not a feasible solution.

5 DISCUSSION
Different value rankings may vary the selection of the most value-
aligned norm system. In previous examples we solved the airport
problem in Figure 1 by considering the value ranking vf m ⪰ vsaf .
This section explores how the solution changes for alternative
value rankings (vf m ⪯ vsaf , vf m ∼ vsaf ). We will also compare
the approach above to the utilitarian optimisation approach in [18].

5.1 Safety preferred to free movement
If vf m ⪯ vsaf , preference induction produces the ranking {n2, . . .,
n7} ⪰Ω {n1}. Grounding this ranking, we obtain the norm rank-
ing n2 ∼n . . . ∼n n7 ⪰n n1. As in Example 7, we depict how to
compute the preference between a few illustrative norm systems:
{n1}, {n1,n2,n4}, {n2,n4,n5}, {n3,n4,n5}. In this case we have
Ξ1 = {n2,n3,n4,n5,n6,n7} and Ξ2 = {n1}. Therefore, we have
η({n1}) = (0, 1); η({n1,n2,n4}) = (2, 1); η({n2,n4,n5}) = (3, 0);
η({n3,n4,n5}) = (3, 0).

Since (3, 0) ≥L (2, 1) ≥L (0, 1), we have the following ranking
over norm systems: {n3,n4,n5} ∼∗

Ω {n2,n4,n5} ⪰∗
Ω {n1,n2,n4} ⪰∗

Ω
{n1}. After encoding as an LP and subsequently solving the norm
selection problem consideringvsaf ⪰ vf m , we would either obtain
{n2,n4,n5} or {n3,n4,n5}, since they are equally value-aligned.

5.2 Safety and free movement equally valued
With the value ranking vf m ∼ vsaf , namely vf m and vsaf are
equally preferred, the ranking resulting from preference induc-
tion would be: {n1} ∼Ω {n2, . . . ,n7}. Grounding this ranking, we
obtain the norm ranking: n1 ∼n . . . ∼n n7. As before, we show
how to compute a ranking over a few norm systems, namely {n1},
{n1,n2,n4}, {n2,n4,n5}, {n3,n4,n5}. In this case, since all norms
are indifferently preferred, we only have one equivalence class,
Ξ1 = {n1, . . . ,n7}, which leads us to define, for any norm system Ω,
η(Ω) = |Ω |. Hence, it follows that: η({n1}) = 1 and η({n1,n2,n4}) =
η({n2,n4,n5}) = η({n3,n4,n5}) = 3.

Since 3 ≥L 1, we would have the preferences: {n3,n4,n5} ∼∗
Ω

{n2,n4,n5} ∼∗
Ω {n1,n2,n4} ⪰∗

Ω {n1}. After encoding as an LP and

subsequently solving the norm selection problem consideringvsaf ∼

vf m , we either obtain {n2,n4,n5} or {n3,n4,n5}.

5.3 Differences between qualitative and
utility-based norm selection

Next we compare the qualitative norm selection process with the
quantitative approach described in [18]. In broad terms, the method
in [18] assigns some utility to each value. The utility of a value is
obtained by adding up the utilities of its immediately less preferred
values in the value system plus 1. For instance, considering the case
in Figure 1, following [18], and vf m ⪰ vsaf as preferences over
values in the value system, would result in the following utilities:
u(vsaf ) = 1, u(vf m ) = u(vsaf ) + 1 = 2. From this, the utility
of a norm is computed as the sum of the utilities of the values it
supports, and the utility of a norm system is the sum of the utilities
of the norms it contains. As to the case in Figure 1, we would
obtain that u(n1) = 2, and the rest of norms would get utility 1.
The norm system {n3,n4,n5} would get utility 3 while {n1} would
get utility 2. Thus, by design, the method in [18] would select
norm system {n3,n4,n5} supporting value vsaf . But this is against
the preferences in the value system, since we have specified that
vf m ⪰ vsaf . Instead, following the method in this paper (shown in
Example 8), the solutionwould be {n1}, which supportsvf m instead.
Therefore, we conclude that the quantitative approach in [18] does
not necessarily lead to the most value-aligned norm system since
it tends to bias the selection towards values being supported by a
large number of norms. This is a consequence of the ad-hoc nature
of the utility formulas of [18], whereas our encoding is derived from
the ranking ⪰∗

Ω (Theorem 2), which we have obtained through a
process grounded on social choice literature and clear axioms.

6 CONCLUSIONS
While there has been previous work on selecting norms in regard
to the moral values they support, this paper explores norm selec-
tion following a qualitative approach. In [17, 18] we focused on
translating the available qualitative information into quantitative
one and then we selected those norms that maximised an ad-hoc
utility formula. In this work, we take full potential of the qualitative
preferences in hand, by transforming them from value preferences
to norm preferences and finally to norm system preferences. Addi-
tionally, we base these transformations in a novel method presented
in recent literature [6]. Although theoretically, obtaining a rank-
ing of all norm systems is possible, we noticed that as the number
of norms considered grows, this task becomes exponentially com-
plex. Therefore, we provide an encoding that allows us to find the
most value-aligned norm system without the burden of building
the whole ranking. We prove that the outputted norm system of
the encoding is indeed the most value-aligned norm system in the
whole ranking satisfying soundness.

We divide our future work in two fronts. First, in terms of norm
selection, here we have assumed that norms only promote values,
and hence considering demotion remains future work. Second, in
terms of ranking theory, we can further research the generalised
subset selection problem and also study anti-lex-cel’s properties as
we think anti-lex-cel’s lifted rankings follow a rule more general
than leximax [3, 14] but more specific than K-leximax [10].
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