
Noname manuscript No.
(will be inserted by the editor)

D-Brane: a Diplomacy Playing Agent for Automated
Negotiations Research

Dave de Jonge · Carles Sierra

Received: date / Accepted: date

Abstract Existing work on Automated Negotiations commonly assumes the ne-
gotiators’ utility functions have explicit closed-form expressions, and can be cal-
culated quickly. In many real-world applications however, the calculation of utility
can be a complex, time-consuming problem and utility functions cannot always
be expressed in terms of simple formulas. The game of Diplomacy forms an ideal
test bed for research on Automated Negotiations in such domains where utility is
hard to calculate. Unfortunately, developing a full Diplomacy player is a hard task,
which requires more than just the implementation of a negotiation algorithm. The
performance of such a player may highly depend on the underlying strategy rather
than just its negotiation skills. Therefore, we introduce a new Diplomacy playing
agent, called D-Brane, which has won the first international Computer Diplomacy
Challenge. It is built up in a modular fashion, disconnecting its negotiation al-
gorithm from its game-playing strategy, to allow future researchers to build their
own negotiation algorithms on top of its strategic module. This will allow them to
easily compare the performance of different negotiation algorithms. We show that
D-Brane strongly outplays a number of previously developed Diplomacy players,
even when it does not apply negotiations. Furthermore, we explain the negoti-
ation algorithm applied by D-Brane, and present a number of additional tools,
bundled together in the new BANDANA framework, that will make development
of Diplomacy-playing agents easier.

Keywords Automated Negotiation · Diplomacy · Constraint Optimization ·
Game Theory · Search

Dave de Jonge
IIIA-CSIC, Campus de la UAB s/n, 08193, Bellaterra, Spain
Western Sydney University, Penrith NSW 2751, Australia
E-mail: davedejonge@iiia.csic.es

Carles Sierra
IIIA-CSIC, Campus de la UAB s/n, 08193, Bellaterra, Spain
E-mail: sierra@iiia.csic.es

2 Dave de Jonge, Carles Sierra

1 Introduction

In any multiagent system (MAS) the outcome of the actions taken by one agent
may also depend on the actions taken by other agents. These agents may have
conflicting goals and, since the other agents may be unknown and may not be
benevolent, an agent generally cannot assume that other agents are willing to help
without receiving any benefits in return. If each agent simply chooses those actions
that are individually best, the outcome can be sub-optimal for each of them, as
illustrated by the well-known Prisoner’s Dilemma [26]. Therefore, agents in a MAS
need to negotiate on what actions each will take, even if those agents are entirely
selfish and are not interested in reaching any socially optimal solution. Generally,
we can say that if a Nash equilibrium [24] is not Pareto optimal then negotiations
allow the agents to reach a more efficient solution by making a binding agreement
in which each agent promises not to deviate from the efficient solution.

Automated Negotiations have been studied extensively, but most work focuses
purely on the strategy to determine which deals to propose given the utility values
of the possible deals. A point that has received little attention however, is the fact
that in many real-world negotiation settings, for any given proposal a negotiator
would first need to spend time determining its utility value before he or she could
decide whether to propose, accept, or reject it. In most existing work this process of
evaluating the proposal is simply abstracted away and it is assumed that this does
not require any domain knowledge or reasoning. In such studies the negotiators
are usually assumed to know the utility value of any deal instantaneously, or after
solving a simple linear equation (see for example [3]). The utility functions of the
agent’s opponents on the other hand, are often assumed to be completely unknown.

We argue, however, that in real negotiations it is important to have knowledge
of the domain and one should be able to reason about it. One cannot, for example,
expect to make profitable deals in the antique business if one does not have exten-
sive knowledge of antique, no matter how good one is at bargaining. Moreover, a
good negotiator should also be able to reason about the desires of its opponents.
A good car salesman, for example, would try to find out what type of car best
suits his client’s needs, in order to increase the chances of coming to a successful
deal, and therefore increase the salesman’s own expected utility.

Another point that is rarely taken into account, is that an agent’s utility may
not always solely depend on the agreements it makes, but may also depend on
decisions taken outside the negotiation thread, either by the agent itself or by
its opponents. Imagine for example buying a small car which is easy to park and
consumes little fuel. This may initially be a great deal. However, if one year later
you decide to extend your family and have children, that small car suddenly is
not so practical anymore. We see that the value of the car deal has changed as
a result of decisions made long after the negotiations had finished. As another
example, imagine renting a property to open a restaurant in a street with no other
restaurants. This might be a good deal until later several other restaurants also
open in that same street, presenting you with so much competition that you can
no longer afford the rent. Again, what was initially a good deal, later became a
bad deal, only this time as a result of decisions taken by competitors.

For these reasons, we think the game of Diplomacy [8] provides a much more
realistic, and therefore more interesting, test bed for Automated Negotiations.
Diplomacy is important for Automated Negotiations (and for AI in general) be-

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 3

cause it includes many of the difficulties one would also have to deal with in real-life
negotiations. It involves constraint satisfaction, coalition formation, game theory,
trust, and even psychology. Being a good Diplomacy player does not only require
strategic insight, but also requires social skills, making it a particularly hard game
for computers. It is not surprising therefore, that computer Diplomacy is only in
its infancy and automatic players are not nearly as well developed as for example
Chess or Go programs. Now that modern Chess computers are already far superior
to any human player, we expect that Diplomacy will draw more and more atten-
tion in the future, as a more interesting challenge for computer scientists. In line
with this expectation in July 2015 the first edition of the Computer Diplomacy
Challenge1 was held as part of the ICGA Computer Olympiad.

In this paper we wish to highlight the fact that Diplomacy satisfies the following
three important properties:

1. For any potential deal the calculation of its utility value (for any agent) is a
hard, time-consuming problem.

2. An agent’s utility does not only depend on the agreements it makes, but also
on decisions it makes outside the negotiation thread.

3. Moreover, an agent’s utility also depends on decisions made by its opponents
outside the negotiation thread.

Another important point is that the number of possible deals in Diplomacy is
extremely large, so it would be impossible to exhaustively determine the utility
values of all possible deals.

The game of Diplomacy has been under attention of the Automated Negotia-
tions community for a long time. Nevertheless, to date very few really successful
negotiating Diplomacy players have been developed. The problem with Diplomacy
is that before one can test a negotiation algorithm one first needs to have an agent
that can play the strategic part of the game and implementing such player is al-
ready a daunting task. Therefore, existing work has focused either on building only
non-negotiating players, or on building negotiation algorithms on top of existing
(often poorly playing) agents. In this paper however, we introduce a new Diplo-
macy playing agent, called D-Brane, that is a good strategic player, but that is also
capable of negotiation. Moreover, we have decoupled its strategic algorithm from
its negotiation algorithm so that they can be studied and reused independently.
This will allow new negotiation algorithms in the future to be implemented on top
of D-Brane’s strategic component. We think that this will mean an important step
forward in the research of computer Diplomacy and Automated Negotiations, as it
will make it much easier for Automated Negotiations researchers to test algorithms
for highly complex domains.

We have performed a number of experiments in which we compare our player
against several existing Diplomacy playing agents. The interesting outcome of
those experiments is that even if our agent does not apply negotiations it still
outplays the existing players, which do apply negotiations. From this we draw the
important conclusion that the success of a negotiating agent may sometimes depend

more on the accuracy and efficiency in which it calculates utility values than on the

bargaining strategy it applies.

In short, this paper makes the following contributions to the field of Automated
Negotiations:

1 https://icga.leidenuniv.nl/?page_id=987

4 Dave de Jonge, Carles Sierra

– We define a new, more realistic, formal model of negotiations which we call a
Negotiation Game.

– We present a strategic Diplomacy player that allows researchers to build ne-
gotiation algorithms on top of it.

– We present the negotiation algorithm used by our player.
– We show that in complex domains it can be more important to have an efficient

and accurate algorithm to determine utility values of potential deals, than to
have a good bargaining strategy.

– We present a new framework, called BANDANA, which consists of a number
of tools to make development of Diplomacy players easier.

The rest of this paper is organized as follows: in Section 2 we give an overview
of existing work on Automated Negotiations and Diplomacy. In Section 3 we give
an informal description of the game of Diplomacy. In Section 4 we define the notion
of a Negotiation Game, which puts negotiations into a larger context so that the
agents’ utility values do not only depend on the agreements made, but also on
decisions made after the negotiations. In Section 5 we present the Diplomacy
playing agent that we have implemented and in Section 6 we present the results of
our experiments with this agent and compare them with the results of a number
of other existing Diplomacy agents. In Section 7 we draw our conclusions and
discuss future work. In Appendix A we present the BANDANA framework which
comprises a number of tools to facilitate the development of Diplomacy playing
agents. Finally, in Appendix B we give a formal description of Diplomacy.

2 Related Work

Much work has been done on Automated Negotiations, which can roughly be
divided into two categories: the Game Theoretical Approach and the Heuristic Ap-

proach.

The Game Theoretical Approach focuses on the theoretical properties of ne-
gotiation, such as the existence of equilibrium strategies. A seminal paper in this
area is a paper by Nash [23] in which he shows that under the assumption of cer-
tain axioms the outcome of a bilateral negotiation is the solution that maximizes
the product of the players’ utilities. This is known as the Nash Bargaining Solu-

tion. Many papers have been written afterwards that generalize or adapt some of
these axioms. Multilateral versions of the bargaining problem have been studied
for example in [19] and [2], while a non-linear generalization has been made in [11].
These studies give hard guarantees about the success of their approach, but the
downside is that they need to make very strong assumptions about their respective
domains, which makes them hard to apply in real-world settings. An example of
such an assumption is the existence of a discount factor that reduces the utility
of any deal by some known factor depending on the time it takes to come to an
agreement. Other examples are the assumption that the negotiation has a fixed
number of rounds and the negotiators take turns, or even that the negotiators have
perfect knowledge about each others’ utility functions. A general overview of such
game theoretical studies is made in [31].

In this paper, on the other hand, we apply the Heuristic Approach. The Heuris-
tic Approach focuses on the implementation of algorithms that can negotiate under

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 5

circumstances where no equilibrium results are known, or where the equilibria can-
not be determined in a reasonable amount of time. It is usually not possible to give
hard guarantees about the success of such algorithms, but they are more suitable
to real-world negotiation scenarios.

However, even in this branch of Automated Negotiations one often still makes
many simplifying assumptions. One often assumes that negotiations are only bi-
lateral, that there is only a small set of possible agreements to make, and that
the utility functions are given as linear additive functions or can be calculated
without much computational cost. Also, most of these studies assume an alter-
nating offers protocol, which is fine for automated agents, but not desirable for
negotiations with humans, because with humans there is no guarantee that they
will indeed follow the protocol. All these assumptions were made for example in
the first four editions of the annual Automated Negotiating Agent Competition
(ANAC 2010-2013) [3]. Important examples in this area are [9], and [10]. They
propose a strategy that amounts to determining for each time t which utility value
should be demanded from the opponent (the aspiration level). However, they do
not take into account that one first needs to find a deal that indeed yields that
aspired utility level. They simply assume that such a deal always exists, and that
the negotiator can find it without any effort.

Recently, more focus has been given to more realistic negotiation settings. Ne-
gotiations with non-linear utility functions, for example, have been studied in [20].
The negotiations are, however, still bilateral, the agreement space is continuous
and it is assumed the agreements at least have a known closed-form expression.
Also in [17] the utility functions are strictly spoken non-linear over the issues, but
they are still linearly additive over pairs of issues. Moreover, the approach of [17]
requires a trusted mediator, or a trusted ‘fair die’.

Domains in which the number of possible deals is very large so that one needs
to apply search algorithms to find good deals have been studied for example in
[21, 15, 22]. Although their utility functions are non-linear over the vector space
that represents the space of possible deals, the value of any given deal can still be
calculated quickly by solving a linear equation. It is true, as the authors claim, that
in theory any non-linear function can be modeled in such a way, but the problem is
that in real-world settings utility functions are not always given in this way (e.g.
there is no known closed-form expression for the utility function over the set of
all possible configurations of a chess game). In order to apply their method one
would first need to transform the given expression of a utility function into the
expression required by their model, which may easily turn out to be an unfeasible
task. Therefore, we have taken the idea of non-linear utility functions a step further
in [16], where for any proposal the evaluation of its utility value required solving
a Traveling Salesman Problem. However, we still assumed that utility values were
assigned directly to deals. The utility values did not depend on any decisions made
outside the negotiation thread.

Most research on Automated Negotiations is restricted to bilateral negotia-
tions. Work on multilateral negotiations often focuses on developing protocols
(e.g. [6] and [14]) or on non-selfish negotiations [18]. An example of a negotiation
algorithm for selfish, multilateral negotiations is given in [25]. In this study how-
ever, a strict separation is made between buyers and sellers, so a buyer can only
come to an agreement with a seller. In real-life negotiations one cannot always
make such a distinction. A retailer, for example, sells its products to consumers,

6 Dave de Jonge, Carles Sierra

but buys them from a wholesaler, so acts both as buyer and seller. Moreover, [25]
considers that only one buyer is present, therefore excluding competition between
buyers. Furthermore, although multiple sellers are present, they still assume that
all agreements are strictly bilateral. Also [1] describes multilateral negotiations in
which one buyer negotiates with n sellers, in parallel bilateral negotiation threads,
but negotiations are only about the price of a single item. In this paper on the
other hand, we do assume multilateral negotiations in which there is no distinction
between buyers and sellers, and in which a single deal may involve more than two
agents.

An alternative way to subdivide the field of Automated Negotiations is to dis-
tinguish between Argumentation Based Negotiations (ABN), and non-Argumentation
Based Negotiations. In ABN one assumes that agents are capable of exchanging
arguments with one another in order to influence the opponents actions. One agent
may for example argue why a certain outcome is unacceptable, or why the oppo-
nent should change its mind about a certain proposal. For example [33] describes a
model of how the beliefs and behavior of negotiators can be changed via persuasive
argumentation. In [32] the authors present “a framework for negotiation in which
agents exchange proposals backed by arguments which summarize the reasons why
the proposals should be accepted”. A general overview of ABN is provided in [5].
Since argumentation plays an essential role in Diplomacy, we think that this game
would also be an excellent test case for ABN. However, in this paper we will not
apply ABN. Instead, we will leave this as future work.

Pioneering work on negotiations in Diplomacy was presented in [30, 29]. These
papers, however, focus mainly on the modular structure of their agent rather than
on the algorithms it applies. It remains unclear how their agent searches through
the large space of possible deals and determines what to propose. Moreover, they
have only been able to play a very small number of games, as they had to play
them with humans, which takes a long time. An informal online community called
DAIDE exists which is dedicated to the development of Diplomacy playing agents.2

Many agents have been developed by this community but only very few are capable
of negotiation. In [8] a new platform called DipGame was introduced to make the
development of Diplomacy agents easier for scientific research. Several negotiating
agents have been developed on this platform such as in [12] and in [7]. Later on in
this paper we compare our agent with the agents presented in these studies.

3 Diplomacy, an Informal Description

Diplomacy is a popular board game invented in the 1950’s which is nowadays also
widely played over the Internet.3 It is a game for seven players, over multiple
rounds, with complete information and no chance moves. In order to play well
negotiation is an essential skill. Although for each player the ultimate goal of the
game is to defeat all other players, players often form coalitions and agree to end
the game in a draw between the members of one coalition once all players outside
that coalition have been defeated.

The full set of rules of Diplomacy is rather complex, so we only give a simplified
description. The differences with the full set of rules are not relevant to this paper

2 http://www.daide.org.uk
3 http://www.playdiplomacy.com/

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 7

anyway.4 Furthermore, in this Section we will keep the discussion informal. For a
formal definition of the rules we refer to Appendix B.

Diplomacy is a game over multiple rounds. The seven players (also referred to
as the seven Great Powers) are called England, Russia, Germany, France, Turkey,
Austria and Italy, which are usually abbreviated to ENG, RUS, GER, FRA, TUR,
AUS, and ITA. Each player begins with 3 or 4 units (also called armies or fleets)
that are placed on a map of Europe in the early 20th century. The map is divided
into 75 provinces, which can each hold 0 or 1 units. Some of the provinces (34
in total) are marked as Supply Centers. A player becomes the owner of a Supply
Center if he moves one of his units into that Supply Center. If that player later
moves his unit out of that Supply Center he remains the owner, until another
player moves one of his units into it.

If the owner of a Supply Center changes the new owner will receive an extra
unit in the next round, and the previous owner will lose one unit. A player is
eliminated when he loses all his units. The game ends either when one player
becomes the winner by owning 18 or more Supply Centers (a Solo Victory), or
when all players that have not yet been eliminated agree to end the game in a
draw.

In each round each player needs to decide what to do with each of his units.
In Diplomacy-terminology we say that each player must submit an order for each
of his units. He can either submit a move-to order, meaning that he tries to move
the unit from its current location to an adjacent province, a hold order, meaning
that the unit intends to stay in its current location, or a support order, meaning
that the unit will not move, but instead will give extra strength to a moving or
holding unit. A unit u can only support a unit u′ that moves to (or holds in) a
province p if u is located in a province adjacent to p.

The players all submit their orders simultaneously, which means that each
player must decide his orders without knowing which orders the other players are
submitting in that round.5

If two units of two different players are both ordered to move to the same
province (or one of them holds in that province), then only the unit that receives
the most supports will indeed move, while the other one will stay in its current
province (or will be expelled from it if it was trying to hold). In case two units have
an equal amount of support then both units will stay in their current province.
When a player moves one of his units into a Supply Center he does not own, he
will become the new owner of that Supply Center, and therefore we say the player
conquers that Supply Center. An interesting aspect of this game is the fact that a
unit u of one player may give support to a unit u′ that belongs to another player.
Therefore, players can help each other to conquer Supply Centers.

The main difference between Diplomacy and purely strategic games like Chess
and Checkers is that in Diplomacy players are allowed to negotiate with each other
and form coalitions. Each round consists of two stages: a negotiation stage followed
by an action stage. During the action stage the players submit their orders, while
during the preceding negotiation stage the players negotiate about which orders
they will (or will not) submit during the action stage. Typically, players agree not

4 We refer to https://www.wizards.com/avalonhill/rules/diplomacy.pdf for a complete
description of the rules.

5 In a real-life game this is achieved by letting each player first secretly write down his orders
on a piece of paper and only once everyone has done so, the orders are revealed.

8 Dave de Jonge, Carles Sierra

to attack each other, or they agree that one player will use some of its units to
support a unit of the other player.

When a player αi tries to move into a Supply Center p, or supports a coalition
partner to move into p, we say he is participating in a battle for p. In order to
win the battle (i.e. to successfully move into p and thus become its new owner) αi
must submit a move-to order for some unit u to move into p (or hold order to stay
in p) and αi or any of his coalition partners may submit any number of support
orders to support the unit u. We refer to these orders as the battle plan of αi for
province p. Typically, more than one player will try to conquer the same province
at the same time, so only the player with the strongest battle plan will succeed.
Furthermore, the units of a player are often spread around the map of Europe, so
during any round a player may be involved in several battles at the same time.

Example Let us focus on the three players ENG, FRA and GER and suppose
that ENG and FRA together form a coalition. These players submit the following
orders:

1. ENG moves his unit in the North Sea to Holland.
2. FRA’s unit in Belgium supports ENG’s unit in the North Sea.
3. GER moves his unit in Kiel to Holland.
4. FRA moves his unit in Burgundy to Munich.
5. GER holds with his unit in Munich.
6. GER’s unit in Silesia supports GER’s own unit in Munich.

We see here there are two battles going on: a battle for Holland and a Battle for
Munich. The first two orders together form a battle plan of the coalition {ENG,
FRA} to conquer Holland and the third order is the battle plan of GER to conquer
Holland. The fourth order is a battle plan of FRA to conquer Munich, and the
fifth and sixth orders form GER’s battle plan to defend Munich.

Although ENG and GER both try to move to Holland, only ENG will suc-
ceed, because ENG’s unit has support from FRA. Furthermore, FRA is trying to
expel GER ’s unit from Munich, but fails, because FRA ’s unit does not have any
support, while GER’s unit in Munich does have support (in fact, even without
support GER’s unit would not be expelled from Munich, because FRA and GER
would have equal strength).

In the rest of this paper we will consider each round of Diplomacy as a sepa-
rate negotiation scenario that satisfies the three properties we highlighted in the
introduction. Indeed, determining the influence of an agreement on the number of
conquered Supply Centers is a complex combinatorial problem. Furthermore, the
utility of a player αi is not directly determined by the agreements it makes, but
rather by the orders submitted by αi, as well as the orders submitted by its oppo-
nents. In the following sections we will formalize these properties, by defining the
notion of a Constraint Optimization Game, which captures the first property, and
the notion of a Negotiation Game, which captures the second and third properties.

4 Negotiation Games

As explained, in this paper we assume that the agents’ utility values depend not
only on the agreements they make, but also on the decisions they take outside

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 9

the negotiation thread. In order to model this formally we define the concept of a
Negotiation Game.

The idea of a negotiation game is that the players are playing some game G,
but before doing so they have the opportunity to negotiate binding agreements
about which actions each player will take. The players’ utilities are purely deter-
mined by their actions in the game G, but since their choice of actions is partially
restricted by the agreements they make, the agreements between the players indi-
rectly influence the players’ utility values. The negotiation thread followed by the
actual playing of the game G are together referred to as the Negotiation Game over

G and is denoted as N(G).

Definition 1 A one-shot gameG consists of a set of players, PlG = {α1, α2, ...αn},
for each player αi ∈ PlG a set of actionsMG

i and for each player αi ∈ PlG a util-

ity function fGi which is a function from
MG =MG

1 ×MG
2 × ...MG

n to R. An element µ of the set MG is called an action

profile and its utility vector fG(µ) is the vector
fG(µ) = (fG1 (µ), fG2 (µ), ...fGn (µ)) ∈ Rn.

We now want to allow the players to negotiate over the actions they take. For this
reason, we need to define the concept of a deal.

Definition 2 A deal x over a one-shot game G is a Cartesian product of nonempty
subsets Si ⊆MG

i , one for each player: x = S1×S2× . . . Sn. The set of all possible
deals over a game G is called the agreement space AgrG of G.

A deal should be interpreted as an agreement between the players that each of
them will only choose its action from the subset Si.

Example Let G be the Prisoner’s Dilemma. There are two players: PlG = {α1, α2}
and their actions are: MG

1 = MG
2 = {confess, deny}. The agreement space AgrG

consists of all products S1×S2 where S1 and S2 can be either {confess}, {deny} or
{confess, deny}. So AgrG contains 9 possible deals. The deal {confess} × {confess,
deny} for example would represent the agreement that α1 will play ‘confess’, while
α2 can play either ‘confess’ or ‘deny’.

Regarding to this example, we should note that in the Prisoner’s Dilemma the
players are of course not allowed to negotiate. However, this does not mean that
we cannot define its Agreement Space. After all, according to Definition 2 a deal is
a well-defined concept for any one-shot game G even if players are not allowed to
negotiate. This is important because we first need to define the Agreement Space
of a non-negotiation game G before we can define the negotiation version N(G) of
that game. Therefore, AgrG should be interpreted as the space of deals that the
players could make if they were allowed to negotiate.

In the following we will use the notation MG
i [x] instead of Si to explicitly

indicate that it is part of a deal x. Note that if MG
i [x] = MG

i player αi is not
affected by the deal; the set of actions he can choose from is not restricted by the
deal. We therefore say that an agent is participating in a deal x ifMG

i [x] is a strict

subset of MG
i .

Definition 3 The set of participating agents pa(x) of a deal x is defined as:

pa(x) = {αi ∈ PlG | MG
i [x] 6=MG

i }

10 Dave de Jonge, Carles Sierra

Definition 4 Given a one-shot game G and a deal x of AgrG, the restricted game

G[x] is the same game as G except that each player αi is only allowed to choose
its action from the subsetMG

i [x] rather than its full set of actionsMG
i . Similarly,

for a set of deals X the game G[X] is the game G with the restriction that each
player αi can only choose its action from the intersection

⋂
x∈XM

G
i [x].

Definition 5 A set of deals X is called consistent iff its intersection is nonempty:⋂
x∈X x 6= ∅.

Note that if X is not consistent, it means that there is no action profile that
satisfies all agreements in X, so it is impossible to obey them all.

Given a one-shot game G and a positive integer d the negotiation game over G,
denoted as Nd(G), is a game over d+ 1 rounds which are labeled as: t0, t1, t3...td.
The first d rounds are referred to as the negotiation stage, and the last round is
called the action stage. The idea is that only in the last round the players take
an action from the game G, while during the first d rounds the players negotiate
which actions they will take in the last round.

We will now define the negotiation protocol that is applied during the negotia-
tion stage. In each round of the negotiation stage each player takes an action which
is either: ‘accept(x)’, or ‘none’, where x can be any deal from the agreement space
AgrG associated with the game G. The players take their actions simultaneously,
and the accepted deal x can be different for each of the players.

Definition 6 We say a deal x is confirmed in round tj if j is the smallest number
for which both the following predicates are true:

– For each αi ∈ pa(x) there is some round tki with ki ≤ j in which αi has taken
the action ‘accept(x)’.

– The set Xj ∪ {x}, where Xj is the set of all deals that have been confirmed in
any round tk with k < j, is consistent.

We say a deal x is confirmed if it was confirmed in any round tj with j < d.

This means that a deal x is considered confirmed if at some point all its partici-
pating agents have played ‘accept(x)’, and x is consistent with the deals that have
already been confirmed earlier.

This negotiation protocol is called the Unstructured Negotiation Protocol, and
was introduced in [16]. It allows each player to make any proposal whenever he
or she wants, unlike the more common Alternating Offers Protocol [27] in which
players take turns. The definition of a negotiation game could be easily changed
to reflect the Alternating Offers Protocol instead, but we think that this protocol
is too restrictive to model real negotiations. In fact, the rules of Diplomacy do not
specify any protocol at all. Players are allowed to negotiate however they want.

In most literature on negotiation protocols one agent proposes a deal, and then
another agent may or may not accept the deal. To keep our formalization simple
however we do not make this distinction, so both the proposal and the acceptance
are represented by the ‘accept’ action. Furthermore, we should note that under
this protocol the negotiators are not obliged to respond to a proposal. Instead
of rejecting it or making a counter proposal they may simply remain silent, by
playing the ‘none’ action. Furthermore, we do not explicitly model the option

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 11

of withdrawing from the negotiations. However, a negotiator can still withdraw
simply by remaining silent for the rest of the negotiation stage.

If Xd denotes the set of all deals that were confirmed during the negotiation
stage, then during the action stage of Nd(G) the players play the game G[Xd].
This means they can only pick actions that are consistent with the agreements
they made during the negotiation stage.

Definition 7 Let G be a one-shot game and d a positive integer. The Negotiation

Game over G, denoted as Nd(G), is a game over d+1 rounds, with the same players
as G. In the first d rounds (the negotiation stage) in each round each player can
play either the action ‘none’ or an action accept(x) for any x ∈ AgrG, and in the
last round (the action stage) the players play the game G[Xd], where Xd is the
set of deals confirmed during the negotiation stage. Each player αi receives the
utility fGi (µ) where µ ∈

⋂
x∈Xd x is the action profile chosen by the players during

the action stage.

For simplicity we have here defined the negotiations to take place over a sequence
of d discrete rounds. However, one can easily use this model to approximate nego-
tiations that take place in continuous time, simply by taking d to be a very large
number and setting the duration of each round in the negotiation stage to a very
small number. This may mean that players do not have enough time to decide
which action to take in each round, but that is not a problem if we assume that
not taking an action is interpreted as taking the action ‘none’. In the following,
we will often write N(G) instead of Nd(G) since the actual value of d is mostly
irrelevant for our purposes.

Finally, we would like to stress that a player’s set of allowed actions MG
i [Xd]

in the action stage can only be smaller than its full set of actions MG
i if that

player αi himself has agreed with those restrictions by accepting the deals in Xd.
Of course, restricting your set of actions is never beneficial by itself, but when the
other players return the favor by also restricting their sets of actions, this can be
highly beneficial.

Example Again, let G be the Prisoner’s Dilemma, then N1(G) is the negotia-
tion game over the Prisoner’s Dilemma with d = 1. In round t0 both players
have the opportunity to suggest a deal; for example, they could play the action
accept({deny} × {deny}). If they both suggest this deal then this deal is confirmed,
meaning that in round t1 each player αi can only play the action ‘deny’.

Proposition 1 If G is the Prisoner’s Dilemma then the negotiation game N1(G) has a

Subgame Perfect Equilibrium that consists of both players playing accept({deny} × {deny})
in t0 and both playing ‘deny’ in t1.

Note that the Nash Equilibrium of N1(G) dominates the Nash Equilibrium of the
pure Prisoner’s Dilemma G without negotiations, in which both players play ‘con-
fess’. Therefore, this demonstrates how the introduction of negotiations improves
the individual outcomes of the players.

In the introduction we mentioned that we want utility functions to satisfy three
properties. We see that for any Negotiation Game the second and third property
are indeed satisfied: the utility values obtained by the players are determined by

12 Dave de Jonge, Carles Sierra

the actions they take in the action stage, rather than the agreements made in the
negotiation stage. The agreements only influence the players’ utilities indirectly,
because they restrict the actions that can be taken during the action stage. We
think this model reflects how negotiations work in real life. After all, signing a
contract is not an action that is valuable by itself. Instead, it merely binds all
signing parties to undertake certain actions (or refrain from undertaking certain
actions), and it is these actions that determine the utilities obtained by those
parties.

5 D-Brane

We have implemented a Diplomacy-playing agent called D-Brane (Diplomacy
BRAnch & bound NEgotiator). As a heuristic, in each round it tries to maxi-
mize the number of Supply Centers conquered during that round. In this way we
can regard the action stage of a single round of Diplomacy as a game in itself,
which we denote as Dipε. The parameter ε represents the configuration of the
units on the map, which is of course different in each round. Our agent’s utility
function f for the game Dipε is then the number of Supply Centers conquered,
and a full round of Diplomacy can then be seen as an instance of the negotiation
game N (Dipε). A formal definition of Dipε can be found in Appendix B.

Of course, the fact that our player only tries to maximize its number of Supply
Centers for the current round is a very greedy heuristic. We know from personal
experience that real players often think ahead more than one round. Nevertheless,
as we will see in the experimental section, we did manage to implement a successful
player using this heuristic.

D-Brane consists of two independent components: the strategic component (see
Section 5.1) and the negotiating component (Section 5.3). The negotiating com-
ponent searches for deals during the negotiation stage to propose to the coalition
partners and determines whether or not to accept proposals received from the
coalition partners. The strategic component determines, given any deal x, which
are the best actions to take if x is confirmed. The strategic component is used
in two ways: during the negotiation stage the negotiating component applies the
strategic component to determine whether any deal is valuable enough to be pro-
posed or accepted, and during the the action stage it is used to determine which
orders to submit, under the restriction of the agreements that were made during
the negotiation stage. This modular decomposition of D-Brane is important be-
cause it will allow future researchers to replace D-Brane’s negotiation algorithm
with their own algorithms, allowing them to compare these negotiation algorithms
independent of the underlying strategy.

It is important to understand that D-Brane is a selfish negotiator: it does help
its allies in the game, but only because it expects help from them in return in
later rounds. Another important aspect of D-Brane is that it always obeys all
agreements it makes and always assumes that the other agents will do the same.
This is a simplification, because in a real Diplomacy game players may not always
obey their agreements, and therefore the notion of trust is an important factor.
However, the subject of trust is beyond the scope of our work so we only focus
on strategy and negotiations. Furthermore, D-Brane does not try to form the best
possible coalition. Instead, it assumes that a certain coalition structure is given

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 13

from the start. Again, this is because the problem of coalition formation is beyond
the scope of our work.

D-Brane was implemented in Java, using the DipGame framework [8]. How-
ever, we did not use the negotiation language and negotiation server provided by
DipGame, because it turned out easier to implement our experiments with a cus-
tom made negotiation server and language, which we have bundled into the new
BANDANA framework (see Appendix A).

In the following, we will always assume that the algorithms we describe are
running on the agent with name α1. The other agents, α2 . . . αn, may also be copies
of D-Brane, but they may just as well be any other Diplomacy playing agent, or
they may even be human players.

5.1 The Strategic Component

Given a game state ε (i.e. a configuration of units on the Diplomacy map), a deal
x and any player αi the strategic component returns a set of orders for αi for the
game Dipε[x] plus the number of Supply Centers that αi is guaranteed to conquer
if it submits those orders. Note that, although this component is part of agent α1,
it can also be used to predict the orders and the the number of conquered Supply
Centers of any other player αi. This is important, because it allows α1 to assess
how valuable the deal x is to the other participants in the deal. After all, it does
not make sense to propose deals that are unprofitable for the other participants.

In theory one could try to determine the set of all possible actions for each
player and then calculate the Nash Equilibrium, but this is computationally too
expensive as the number of possible action profiles can easily be of the order 1010.
Our algorithm, however, manages to quickly make very good approximations by
decomposing the game into a number of smaller games which each correspond to
the battle for a single Supply Center. Then, after determining the best battle plans
for each battle, it tries to find the strongest combination of such battle plans.

We say that a battle plan for a player αi to conquer a province p is invincible

if no opponent can choose any battle plan that would prevent αi from conquering
p (see Appendix B for a formal definition). Once we have determined all battle
plans for a given province p, for all players, it is easy to determine which of those
battle plans are invincible. Similarly, we can determine the invincible pairs of battle
plans. An invincible pair is a pair of battle plans (βp, βq) for two different Supply
Centers p and q respectively, such that if α1 plays both of these battle plans, then
at least one of them is guaranteed to succeed (again, see Appendix B for a formal
definition). The idea behind the definition of an invincible pair is the following.
Suppose that our battle plan βp can be defeated by an opponent’s battle plan
β′p and that our battle plan βq can be defeated by an opponent’s battle plan β′q.
One might be inclined to jump to the conclusion that playing βp and βq cannot
guarantee us to conquer any Supply Center. However, it might be the case that
β′p and β′q are the only plans that can defeat βp and βq, and that β′p and β′q are
incompatible with each other, so the opponent cannot play them both. In that
case, if we play both βp and βq we are still guaranteed that at least one of the two
will succeed.

14 Dave de Jonge, Carles Sierra

5.1.1 The Basic Algorithm

If ε denotes some state of the game the set of all battle plans for player αi to
conquer or defend a Supply Center p is denoted Bεi,p. The set of all Supply Centers
is denoted SC.

Given a game state ε, an agreement x, and a player αi, the strategic component
works as follows:

1. For each p ∈ SC determine all invincible plans from the set Bεi,p.
2. For all pairs of Supply Centers (p, q) ∈ SC × SC (with p 6= q) determine all

invincible pairs from the set Bεi,p ×B
ε
i,q.

3. Remove all invincible plans and invincible pairs that are not consistent with x.
4. Find the largest consistent combination of invincible plans and pairs, using

And/Or tree search with Branch & Bound (Sec. 5.1.2).
5. For each province for which we have not been able to select an invincible plan

or pair, select the strongest non-invincible battle plan that is consistent with
x and the plans and pairs chosen in the previous step.

6. Return the full set of battle plans we have selected.

The number of invincible plans and pairs returned equals the number of Supply
Centers αi is guaranteed to conquer. The plans chosen in step 5 merely form a
best effort to try to conquer some more Supply Centers even though the opponents
might be able to defeat those attempts. Of course, the opponents may not be
perfect so it is at least worth trying.

The battle plans in Bεi,p may contain support orders for units of coalition
partners of αi. However, αi cannot be sure that these coalition partners will indeed
submit those orders, unless the deal x ensures that. Therefore, any plan that
contains orders for units that do not belong to αi and that are not ensured by the
agreement x are discarded.

In theory, the algorithm would be even stronger if it did not only determine in-
vincible plans and pairs, but also invincible triples, invincible quadruples, etcetera.
However, the number of such n-tuples grows exponentially with n, so checking
which ones are invincible would slow down the algorithm considerably.

5.1.2 And/Or Tree Search

And/Or tree search [4] is a variant of regular tree search that can be used to solve
Constraint Optimization Problems. The power of this technique lies in the fact
that the depth of the search tree is drastically decreased with respect to a naive
tree search, by exploiting the knowledge that certain variables are independent.

Note that step 4 of the algorithm above is indeed a Constraint Optimization
Problem: for each Supply Center we want to pick an invincible plan or an invincible
pair, but not all combinations of such plans and pairs are consistent. Since every
invincible plan or invincible pair guarantees a conquered Supply Center, we aim
to pick as many of such plans as possible. However, because of the constraints we
may not be able to pick an invincible plan or pair for every Supply Center; we
sometimes need to pick the ‘empty plan’ (i.e. none of our units will try to conquer
the Supply Center).

The variables of this constraint optimization problem are the Supply Centers
p ∈ SC. For each such variable, its domain consists of the set of invincible plans, the

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 15

set of invincible pairs,6 and the empty plan. The constraints between the variables
are given by the fact that a battle plan for Supply Center p and a battle plan for
Supply Center q may be incompatible if they contain two different orders for the
same unit. The value to optimize is the number of Supply Centers for which we
have not chosen the empty plan.

In this setting it is very easy to see which variables depend on each other, and
which are independent. Two Supply Centers p and q are independent if there is
no unit that is involved in the battle plan for p as well as in a battle plan for q.
This means that it is an ideal case for And/Or Tree Search.

5.2 Constraint Optimization Games

Above we have shown how our player solves the complex game Dipε by decom-
posing it into smaller games (the battles), determining the best moves in every
such battle, and then using Constraint Optimization techniques to find the best
combination of these best moves.

However, the way we presented this was completely ad-hoc for the game of
Diplomacy. In this section we will therefore generalize these ideas, by only looking
at the abstract properties of the game that allowed us to follow this ‘divide-and-
conquer’ approach. We will define a new class of games that we call Constraint
Optimization Games (COG). A COG is a game that can be decomposed as a
number of smaller games that are played simultaneously but that are not inde-
pendent. We then show how the above described algorithm for Diplomacy can be
generalized to any other Constraint Optimization Game.

Let MG be a set of m one-shot games: MG = {G1, G2, ...Gm}, each with the
same n players. We call these games the micro-games. The set of actions for

player αi in micro-game Gj is denoted as MGj
i .

Definition 8 A Constraint Optimization Game GMG is a game with n players,
such that the set of actionsMGMG

i for player αi in GMG is a subset of the Cartesian

product of the actions of each micro-game:MGMG
i ⊆MG1

i ×M
G2

i × ...M
Gm
i . The

utility function for a player αi is defined as the sum of its utility functions in each
of the micro-games:

fGMG
i (µ) =

m∑
j=1

f
Gj
i (µj) (1)

Note that an action profile µ of GMG can then be viewed as a matrix in which
each row µj represents an action profile from the micro-game Gj and each entry
µj,i represents the action taken by player αi in micro-game Gj .

We see that the game GMG consists of a number of smaller one-shot games
that cannot be played independently from each other, because the set of actions

MGMG
i of αi is a subset of the product of the sets MGj

i . Each player αi can pick

for any micro-game Gj any action from MGj
i , but not all combinations of such

actions are allowed. In other words: there are constraints between the actions of
the several micro-games that need to be satisfied. Therefore, the best strategy for

6 An invincible pair for provinces (p, q) is considered a value for the variable corresponding
to p, where p is lower than q in some predefined ordering of the Supply Centers.

16 Dave de Jonge, Carles Sierra

the game GMG is not simply the combination of the best strategies of each indi-
vidual micro-game. For example, player α1 may have the optimal action a ∈MG1

i

in micro-game G1 and an optimal action b ∈MG2

i in micro-game G2, but the com-
bination of a and b may be illegal, so α1 is forced to choose a suboptimal action
in at least one of these two micro-games.

Example In the game Dipε the battle for a single Supply Center pj can be seen
as a micro-game Gj . The utility for a player αi in micro-game Gj is 1 if αi suc-
ceeds in conquering pj , and 0 otherwise. Its utility for the entire COG is then the
total number of Supply Centers it conquers. For each Supply Center p a player αi
must choose which orders to submit for its units located around p. However, some
of those units may also be adjacent to another Supply Center q. Therefore, if αi
decides to order a unit u to move to p, it can no longer use that unit to move to
q. So we see that indeed there are constraints between the micro-games.

The concept of a COG combines aspects from Constraint Optimization Prob-
lems (COP) with aspects from Game Theory. Just like in a COP an agent αi needs
to pick m values for m different variables, such that the combination is consistent
and maximizes its utility [28]. However, unlike normal COPs, the utility of an
agent does not only depend on the values it chooses, but also on those chosen by
its opponents, which have different utility functions to maximize, just as in Game
Theory. Another way to look at it, is to see it as a variation of a Distributed
Constraint Optimization Problem in which there is not one single utility function
to maximize, but rather each agent aims to maximize its own individual utility
function.

Let us now present a rough sketch of how one can generalize the algorithm
described in Section 5.1 to other COGs. The essence of our algorithm can be
described in three steps:

1. Assign a value to every action of αi in every micro-game.
2. Do the same for every pair of actions of αi for every pair of micro-games.
3. Use And/Or search to find the combination of actions that maximizes the sum

of its action-values, under the restriction that the chosen set of actions must
be consistent.

The idea is that assigning a single value to each action in each micro-game in
fact reduces the COG to a standard COP, which can be solved with an And/Or
search. One straightforward way to assign a value to an action µj,i is to find the
set of opponent actions µj,−i that minimize the utility function fi(µj,i, µj,−i). In
other words: the value obtained in the worst-case scenario that the opponents pick
those actions that minimize αi’s utility. If we apply this principle to Dipε, then
this means that every invincible plan or pair receives a value of 1 and all other
plans receive a value of 0, which essentially means that all non-invincible plans are
discarded, which is indeed what we did.

Finally, we would like to remark that finding the best actions to take in a COG
is a hard combinatorial problem, so if G is a COG, then N(G) satisfies all three
properties that we mentioned in the introduction.

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 17

5.3 The Negotiating Component

During the negotiation stage of N (Dipε), given a coalition C ⊂ Pl that includes α1,
the negotiating component explores the agreement space by means of a best-first
Branch & Bound tree search in order to find good deals to propose to the coalition
partners. At regular time intervals it determines whether it should make a new
proposal to its coalition partners and, if yes, which one. Furthermore, whenever the
agent receives a proposal from any of the coalition partners it determines whether
to accept that proposal or not.

The negotiating tree search algorithm is a previously developed algorithm for
general negotiation settings, called NB3, applied to Diplomacy. We only give a
brief description here. For more information we refer to [16].

5.3.1 Tree Search

We will now use the notation p1, p2, . . . p34 to denote the 34 Supply Centers of
Diplomacy. Let C denote the set of coalition partners of α1 (including α1 itself),
let BεC,p denote the set of battle plans with target p ∈ SC involving only players
in C, and let BεC denote the set of battle plans for all coalitions partners, for any
Supply Center:

BεC =
⋃
p∈SC

BεC,p BεC,p =
⋃
αi∈C

Bεi,p

The NB3 algorithm expands a search tree in which each node ν (except the
root node) is labeled with a battle plan βν ∈ BεC,p for some Supply Center p.
The search starts with a single tree node (the root). Then, if BεC,p1 has size k1,
the algorithm will add k1 child nodes to the root, with each child labeled with
a different battle plan β ∈ BεC,p1 . Next, it uses a heuristic function to determine
which of these new nodes is the “best” and continues expanding that node ν. If
BεC,p2 has size k2 then the algorithm creates k2 children for node ν, each labeled
with a different battle plan β ∈ BεC,p2 . Again, the heuristic function chooses the
next node to split, and this is repeated until either the deadline for negotiations
has finished, or until the tree has been explored exhaustively. Any node for which
the battle plan is incompatible with the battle plans of its ancestors is pruned
immediately.

Each node in this tree represents a deal that may be proposed to the coalition
partners. Specifically, if path(ν) denotes the set of nodes that make up the path
from the root node to ν, and plan(ν) the set of battle plans corresponding to the
labels of the nodes in path(ν):

plan(ν) = {β ∈ BεC | ∃ν
′ ∈ path(ν) : β = βν′}

then with each such plan plan(ν) we can associate a deal xν ∈ AgrDipε in which
each participating player is committed to submit his or her orders7 that appear
in plan(ν), which means that any action profile µ is allowed, as long as it contains
all orders that the players have committed themselves to.

7 Remember that plan(ν) is a set of battle plans, and each battle plan is a set of orders. So
with “the orders in plan(ν)” we actually mean the orders in the battle plans in plan(ν).

18 Dave de Jonge, Carles Sierra

Note that xν as defined here is indeed a deal in the sense of Definition 2. The
battle plans in plan(ν) consist of a number of orders, and if for some player αi
there are a number of orders in plan(ν) then its restricted set of actions Mε

i [xν]
consists of those actions in Mε

i that contain all αi’s orders in plan(ν) .
Note that the set of deals that are considered in this way is much smaller than

the full agreement space AgrDipε , because we are only looking at deals in which
players commit themselves to battle plans, rather than any random set of orders.
In this way we have filtered out for example actions containing invalid supports,
and action profiles in which coalition partners take contradictory actions (e.g. two
coalition partners both trying to attack the same province).

In order to determine which of the deals represented in the tree are good enough
to propose to the coalition partners our algorithm calculates for each node ν and
each coalition partner αi ∈ C a utility value ui(xν). This utility value is not the
same as the utility function f as defined for Dipε, but rather it is a value that
indicates how profitable the deal xν is to player αi. In Section 5.3.2 we will explain
how ui(xν) is defined.

Furthermore, for each node ν and for each coalition partner αi ∈ C the algo-
rithm stores an upper bound ubi(ν) and a lower bound lbi(ν), which are used for
pruning and to calculate the search heuristic. The upper bound ubi(ν) is the high-
est utility ui(xν′) agent αi could possibly receive from any plan xν′ where node
ν′ is any descendent of ν. This means that if ubi(ν) is lower than αi’s reservation
value, any plan that could appear in the subtree under ν would be unprofitable for
αi so the node ν can be pruned. Similarly, the lbi(ν) is the lowest possible value
of ui(x

′
ν) then one could find for any node ν′ that is a descendant of ν.

If for a certain node ν the utility value ui(xν) is higher than the reservation
value rvi for every participating agent αi ∈ pa(xν), it means the deal is in principle
profitable for every participating agent, and therefore D-Brane may consider to
propose it to the others. In that case, the deal will be stored in a list of potential
proposals, which will be used by the negotiation strategy as we will explain in
Section 5.3.3.

5.3.2 Credits

The algorithm tries to find deals that are profitable for each player participating
in the deal. For example, α1 may support α2 to attack some Supply Center p

while in return α2 will support α1 to attack some other Supply Center q. This
is mutually beneficial if neither of these players is able to conquer its targeted
Supply Center without support from the other player. Unfortunately, it turns out
that such situations in which two or more players have the opportunity to help
each other do not occur very often.

To increase the number of opportunities to make beneficial deals D-Brane
applies a ‘credit’ system, which means that when one player αi gives support to
another player αj , the supported player αj is considered indebted to αi. This
means that αi can expect αj to return the favor and give support to αi at some
later phase of the game. Thanks to this system a player may be willing to support
another player even if the favor cannot be returned immediately, which strongly
increases the number of potential deals.

In order to assess the value of a deal, a player should therefore not only take
the number Supply Centers that are conquered thanks to the deal into account,

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 19

but also assign some extra value to the deal to represent future supports that may
be received as a consequence of the current deal.

Specifically, D-Brane stores a number di,j which is the credit balance between
players αi and αj : the number of supports αi has so far given to αj , minus the
number of supports αj has given to αi. If di,j < 0 it means that αj still owes a
number of supports to αi.

D-Brane then calculates the value ui(x) of a deal x for player αi as:

ui(x) = E(f
Dipε[x]
i)− E(fDipεi) +

n∑
j=1

Cr(di,j) (2)

where E(f
Dipε[x]
i) is the expected number of conquered Supply Centers in the

current turn given the deal x, where E(fDipεi) is the expected number of conquered
Supply Centers in the current turn if no deal is made, and Cr(di,j) is given by:

Cr(di,j) =

{
0.4 · di,j if di,j ≥ 0

0.6 · di,j if di,j ≤ 0
(3)

One should understand that while f
Dipε[x]
i is the short-term utility (the number

of Supply Centers conquered directly in the current round), the utility ui(x) is a
sort of long-term expected utility value, which takes into account the number of
supports αi still owes to other players and the number of supports other players
still owe to αi.

We will now show that the values 0.4 and 0.6 that appear in Eq. (3) are chosen
such that D-Brane exhibits behavior that one would indeed expect from a selfish
negotiator.

Proposition 2 A rational player αi that evaluates deals according to Eq. (2) would

only be willing to give support to another player αj if that does not cause αi to lose a

Supply Center.

Proof Losing a Supply Center causes E(f
Dipε[x]
i) to decrease by 1, while giving

support only increases Cr(di,j) by either 0.4 or 0.6, so in total u would decrease.

Proposition 3 A rational player αi that evaluates deals according to Eq. (2) would

only ask support from another player αj if αi expects that this will yield an extra Supply

Center for αi.

Proof If no extra Supply Center is gained the received support decreases u by
either 0.4 or 0.6.

Proposition 4 If a rational player αi that evaluates deals according to Eq. (2) has a

positive credit balance w.r.t αj , then αi would prefer to receive support from αj and

gain a Supply Center, rather than give more support to αj .

Proof If αi has a positive credit balance, then the combination of a gained Supply
Center and a received support increases ui by 1 − 0.4 = 0.6, while giving more
support would increase ui by only 0.4.

Proposition 5 If a rational player αi that evaluates deals according to Eq. (2) has a

negative credit balance w.r.t αj , then αi would prefer to give support to αj rather than

to ask for more support from αj and gain a Supply Center.

20 Dave de Jonge, Carles Sierra

Proof With a negative balance, the extra support would yield 1− 0.6 = 0.4, while
giving support would increase ui by 0.6.

Without Proposition 2 D-Brane would not be selfish because it would be in-
clined to constantly give support to others, while losing its own Supply Centers.
Proposition 3 guarantees that D-Brane does not request any unnecessary supports.
Proposition 4 makes sure that D-Brane only gives support because it expects that
others will return the favor. And without Proposition 5 D-Brane would never
be willing to return any favors, and hence nobody would like to negotiate with
D-Brane.

5.3.3 Negotiation Strategy

Every time a new node ν is generated the algorithm determines whether the cor-
responding deal xν is rational to all participating agents pa(xν). That is, it checks
whether for each participating agent the utility ui(xν) is larger than its reservation
value rvi. If this is the case, then it is stored in a repository of potential deals.

Then, at set intervals during the negotiation stage, the NB3 negotiation algo-
rithm determines whether any of the deals in this repository can be proposed. It
does this by applying a time-based strategy: the closer to the deadline, the more
it is willing to propose or accept deals with less utility for α1. Furthermore, the
closer to the deadline, the more it will be inclined to propose deals that yield high
utility for the other participating agents.

5.3.4 Implicit vs. Explicit Agreements

When two or more players in Diplomacy are in a coalition, this usually implies
two things: it means they will not attack each other and it means that they may
support each other when attacking an opponent. We call the first kind of agreement
an implicit agreement because it is implied by the fact that the players are
allies, so no negotiation is needed to establish such agreements. The second kind
we call an explicit agreement and can only be made by negotiating. The deals
investigated and proposed by the Negotiating Component are therefore exclusively
of the explicit type. The ability of D-Brane to negotiate (i.e. to make explicit
agreements) and its ability to obey implicit agreements can both be switched on
and off, so it can play in 4 different modes: with negotiations on or off and with
implicit agreements on or off.

It is important to make this distinction for the experimental evaluation of D-
Brane. On the one hand it is unrealistic to play without implicit agreements, be-
cause any rational and trustworthy player would always apply them. On the other
hand however, we want to investigate the importance of negotiations. Therefore,
if D-Brane defeats its opponents, we want to know whether this is caused by its
negotiation algorithm, or by the fact that it has a strong strategic module, or
simply because it plays in a coalition and the mere fact that the coalition partners
do not attack one another gives them an advantage over the opponents. Testing
the agent in all 4 different modes allows us to identify to what extent each of these
three elements is responsible for playing well.

Let Xd denote the set of explicit agreements that were confirmed during the
negotiation stage of N(Dipε), and let XC denote the set of implicit agreements

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 21

implied by the coalition C that α1 is in. Then during the action stage of N(Dipε)
the strategic component tries to determine the best possible action of the game:

– Dipε[Xd ∪XC], if both implicit and explicit agreements are obeyed.
– Dipε[Xd], if only explicit agreements are obeyed.
– Dipε[XC], if only implicit agreements are obeyed.
– Dipε, if no agreements are obeyed.

In order to correctly interpret the experimental results we feel it is important
to stress that if both implicit and explicit agreements are switched off this essentially

means that D-Brane plays entirely individually, and does not consider itself part of any

coalition.

6 Experiments

In this section we compare D-Brane with two other Diplomacy playing agents (also
known as ‘bots’) recently presented in [12] and [7]. In both papers a negotiating
agent was tested by letting it play against a standard non-negotiating bot called
the DumbBot. We have done similar experiments with our D-Brane agent and
compared the results with theirs. Moreover, we have submitted D-Brane to par-
ticipate in the Computer Diplomacy Challenge. Our agent turned out to be the
winner of this competition, which confirms the results of our experiments.

We did experiments with the number of D-Branes varying from 2 to 5, while
all other players always being DumbBots. Every such experiment was repeated 4
times; one time for each different mode of D-Brane. In each of the experiments
we performed with negotiations off (i.e. not making any explicit agreements) we
played 500 games, which took up to four-and-a-half hours. For experiments with
negotiations we set the deadline for negotiations to 5 seconds per round. Since such
experiments took much more time we only played 200 games in each such experi-
ment, which still took up to 17 hours. In order to prevent games from continuing
forever because they get stuck in a stalemate, we have programmed the agents to
automatically declare a draw after 40 rounds.8 For our experiments we used the
Parlance game server.9 In each new game this server randomly determines which
player will play which Great Power.

In all experiments with implicit agreements turned on, the D-Branes were
instructed to form a coalition against the DumbBots. D-Brane never breaks any
promises and never leaves the coalition, and assumes its coalition partners will
not do so either. As explained, this is because trust and coalition formation are
beyond the scope of our work. All experiments were performed on a single HP Z1
G2 desktop computer with Intel Xeon E3 4x3.3GHz CPU and 8 GB RAM.

6.1 D-Brane vs. DumbBot

As explained above, we did a number of experiments, with the number of D-Branes
in each experiment varying between 2 and 5, and for each of these numbers, we

8 For readers more familiar with Diplomacy: we mean that the players declare a draw when-
ever a game reaches the Winter 1920 phase.

9 https://pypi.python.org/pypi/Parlance/1.4.1

22 Dave de Jonge, Carles Sierra

performed an experiment with each of the 4 modes of D-Branes, resulting in a total
of 16 experiments. For each of these experiments we measured the performance
of D-Brane by counting the number of Supply Centers conquered. In total there
are 34 Supply Centers, and 7 players, so if all players are equally strong we can
expect each player to conquer 34

7 Supply Centers, so if there are n D-Branes then
we can conclude that D-Brane is better than DumbBot if the D-Branes obtain
more than n · 347 Supply Centers. We see in Table 1 that this was clearly the case
in every experiment. We can therefore conclude that D-Brane plays significantly

better than DumbBot. For example, in the case of 4 D-Branes and 3 DumbBots,
without negotiations and without implicit agreements, on average the D-Branes
together conquer almost 30 Supply Centers, leaving only 4 Supply Centers for the
DumbBots.

Table 1 Number of Supply Centers (± standard error) conquered by the D-Branes in various
settings. There are 34 Supply Centers in total.

2xD-Brane vs. 5xDumbBot:

nego off nego on
impl. agr. off 15.5 ± 0.3 15.1 ± 0.5
impl. agr. on 17.2 ± 0.3 17.9 ± 0.5

3xD-Brane vs. 4xDumbBot:

nego off nego on
impl. agr. off 24.9 ± 0.3 24.4 ± 0.5
impl. agr. on 28.4 ± 0.2 29.6 ± 0.4

4xD-Brane vs. 3xDumbBot:

nego off nego on
impl. agr. off 29.8 ± 0.2 29.5 ± 0.3
impl. agr. on 31.5 ± 0.1 32.1 ± 0.2

5xD-Brane vs. 2xDumbBot:

nego off nego on
impl. agr. off 32.0 ± 0.1 31.5 ± 0.2
impl. agr. on 32.3 ± 0.1 33.2 ± 0.1

As expected, we see that playing with implicit agreements improves the out-
come for the D-Branes. However, we also see that playing with negotiations only
improves the result if it is in combination with implicit agreements. Surprisingly, if
seems that if the implicit agreements are turned off, the negotiation algorithm even
has a detrimental effect, although this is effect too small compared the standard
errors to call it significant.

It is at this point unknown to us why exactly negotiations seem to be ineffective
without implicit agreements. One hypothesis is that this effect might be caused
by the fact that without implicit agreements but with negotiations the D-Branes
will mainly spend their efforts on closing deals to protect themselves from one

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 23

Table 2 The average rank obtained by the D-Branes (± standard error). The theoretically
optimal value is 1.5, and the theoretically worst is 6.5. A value of 4.0 would mean D-Brane is
equal to DumbBot. DipBlue achieves 3.57.

2xD-Brane vs 5xDumbBot:

nego off nego on
impl. agr. off 2.59 ± 0.05 2.75 ± 0.08
impl. agr. on 2.42 ± 0.05 2.35 ± 0.08

another, and can therefore spend less effort on eliminating DumbBots. Without
explicit agreements and without negotiations, it would be easier for one D-Brane
to quickly eat up another D-Brane, which would lead to one very strong D-Brane,
which could then focus on eliminating the DumbBots. Of course, this is bad for
the eliminated D-Branes, but for the group of D-Branes as a whole this could lead
to a higher total number of conquered Supply Centers. With implicit agreements
and with negotiations, the D-Branes do not attack each other anyway, so all their
efforts can be focused entirely on eliminating the DumbBots. More research is
required to determine whether this hypothesis holds or not.

6.2 D-Brane Compared with DipBlue

In [12] a negotiating Diplomacy agent called DipBlue was introduced. In their ex-
periments they let 2 instances of DipBlue play against 5 DumbBots. As a measure
of success they used the average rank of their two agents over 75 games. That
is: after each game the best player gets rank 1, the second best player gets rank
2, etcetera, and the worst player gets rank 7. A player is considered better than
another player if it finishes with more Supply Centers, or if it is eliminated later. If
all players in a game are equally strong then you may expect all players to receive
an average rank of 4.0. With 2 instances of the player to test, the best possible av-
erage rank is 1.5 and the worst is 6.5. The best average rank that DipBlue achieves
in their experiments10 is 3.57.

To compare the performance of D-Brane with DipBlue we have also measured
the average rank of D-Brane in the experiments with 2 instances of D-Brane against
5 instances of DumbBot. The results are displayed in Table 2. It displays the
average rank of the D-Branes in the four different modes, with their respective
standard errors. We note that in all cases the average rank is around 2.5, even
when negotiations were switched off. This means that not only our agent is better
than the DumbBot, but also that even without negotiating D-Brane plays significantly

better than DipBlue with negotiations.
We should remark here, that comparing the negotiation skills of D-Brane with

the negotiation skills of DipBlue is not entirely fair, because D-Brane always obeys
all confirmed agreements, and assumes its coalition partners obey all confirmed
agreements, whereas DipBlue takes into account that the other players may not

10 To be precise: this result was obtained in case one DipBlue was negotiating with one
instance of slightly more simplistic agent called ‘Naive’ against five DumbBots. In case two
instances of DipBlue were playing, their result was worse than 3.57.

24 Dave de Jonge, Carles Sierra

obey their commitments. Thus, when negotiating, D-Brane has an unfair advan-
tage with respect to DipBlue. However, this advantage is not present when both
implicit and explicit agreements are turned off, since in that case D-Brane essen-
tially plays with no coalition partners at all. So at least for that case it is fair to
say that D-Brane outplays DipBlue. The same also holds for our statement that
D-Brane outplays the DumbBot.

6.3 D-Brane Compared with Fabregues’ Agent

In [7] a nameless agent was presented by Fabregues, which was also compared with
the DumbBot. Fabregues did 8 experiments, in which the number of instances of
her bot varied between 0 and 7, and the remaining players were DumbBots. In
each experiment she played 100 games. As a measure of success she counted the
number of victories of her agent. To compare our results with hers, we have also
counted the number of victories of D-Brane in our experiments and displayed them
in Table 3.

It is important to note here, that Fabregues’ experiments were performed on
a super computer, with deadlines of 5 minutes per round, while we did our exper-
iments on a desktop computer, and with deadlines of only 5 seconds per round.
Furthermore, the results displayed in the table are for the cases that the D-Branes
did not negotiate at all, and played without implicit agreements.

Here, we count a ‘victory’ if a D-Brane ends with the highest number of supply
centers. If 2 agents both end with the highest supply centers we count ‘half a
victory’ for each of them. We should note that we have rounded off the percentages
displayed for Fabregues’ agent to multiples of 5. This is because in her thesis
Fabregues does not provide the exact percentages, but only displays a graph from
which it is hard to read off the exact values.

Table 3 First row shows the victory percentages of n instances of Fabregues’ agent versus
7 − n DumbBots. Second row shows the same, for n D-Branes versus 7 − n DumbBots.

n: 2 3 4 5
Fabregues’ agent 45% 70% 85% 95%

D-Brane 61% 84% 95% 98%

We see that in all cases D-Brane scored significantly better than Fabregues’ ne-

gotiating agent, even if D-Brane was not negotiating, and even though our experiment

ran on a single desktop computer rather than on a super computer, and even though

our deadlines were much shorter.

6.4 Varying Negotiation Deadlines

In order to see how the length of the deadlines affects the performance of our nego-
tiation algorithm we have done some more experiments, with varying deadlines. In
these cases the we had 3 D-Branes playing against 4 DumbBots, with negotiations
and with implicit agreements. The results are displayed in Table 4. Each of the

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 25

results is an average over 50 games, except in the case of 5 seconds, which was
averaged over 200 games. We conclude from this experiment that increasing the
negotiation time does not improve the results any further. If D-Brane is capable
of finding a potential deal, it will find it within the first 5 seconds.

Table 4 Number of Supply Centers conquered by the D-Branes, with varying negotiation
deadlines.

3xD-Brane vs. 4xDumbBot:

Deadline per round 5 sec 10 sec 15 sec 20 sec
SC’s conquered 29.6 ± 0.4 29.9 ± 0.8 29.9 ± 0.7 29.5 ± 0.8

6.5 Computer Diplomacy Challenge

Finally, we have also submitted D-Brane to the first Computer Diplomacy Chal-
lenge which was part of the 2015 ICGA Computer Olympiad. For this competition
we only submitted the non-negotiating version (no implicit agreements and no ex-
plicit agreements) of D-Brane, because our negotiation language is not compatible
with the DipGame negotiation framework, which was used for the competition.

The competition had three participants: D-Brane, DipBlue, and another non-
negotiating player called SuperBot. The agents played a number of games in two
different competition set-ups. The first set-up consisted of one instance of each of
these participating bots and four instances of a RandomBot (a player that only
takes entirely random actions). The second set-up consisted of two instances of
each participating bot and one RandomBot.

The results were measured according to two criteria: the number of victories
and the number of Supply Centers conquered. The results are displayed in Table 5.
We see that D-Brane won the competition by a large difference, both measured in
terms of victories and in terms of conquered Supply Centers. This again confirms
the previous results that even without negotiations D-Brane is able to outplay
negotiating players.

7 Conclusions and Future Work

Our experiments make clear that D-Brane plays better than DumbBot, DipBlue
and Fabregues’ agent. We also see however that our negotiation algorithm only

Table 5 Results of the Computer Diplomacy Challenge

Victories Conquered Supply Centers
D-Brane 39 933
DipBlue 11 295
SuperBot 2 376

RandomBot 0 143

26 Dave de Jonge, Carles Sierra

has a relatively small positive effect, and only when applied in combination with
implicit agreements. Of course, one could argue that the NB3 negotiation algorithm
itself is not good enough, but we know from experiments presented in [16] that in
at least one other domain NB3 does produce good results.

Apparently, only negotiating joint battle plans for the current round is not
enough to really benefit strongly from negotiations. Indeed, we know from personal
experience playing Diplomacy that a good player not only negotiates battle plans
for the current round, but also looks farther ahead and negotiates future actions.
This again confirms our claim that the field of Automated Negotiations should
give more attention to the modeling of complex domains, rather than only the
development of bargaining strategies.

In [12] and [7] negotiations had a stronger positive impact on the respective
agents. We think this is because both their agents were implemented by extending
the DumbBot with negotiation capabilities, while the DumbBot is not a very strong
player. It is likely that negotiations have a much bigger impact on bad players,
because good players have less room for improvement.

Furthermore, it is currently still unknown to us why our negotiation algorithm
only works well in combination with implicit agreements. We will need to investi-
gate this further in the future.

The most striking result of our experiments, however, is that even when D-
Brane does not negotiate it still achieves much better results then DipBlue and
Fabregues’ agent, which do negotiate. From this we draw the very important con-
clusion that in some cases successful negotiation may depend more on the way the

underlying domain is tackled, rather than on the applied bargaining strategy. We there-
fore argue that future research in the field of Automated Negotiations should put
more emphasis on domains where calculating the utility values of potential deals
is a complex task. In realistic negotiation settings one simply cannot assume that
an explicit representation of the utility functions is given and easy to calculate. In-
stead, negotiation algorithms should apply more sophisticated forms of reasoning
to determine which deals are profitable.

We think that D-Brane will be very important for future negotiations research,
because it allows researchers to compare their algorithms not only with the Dumb-
Bot but also with our much stronger agent. We have included the strategic com-
ponent of D-Brane in the BANDANA framework, so that other researchers can
implement their own negotiation algorithms on top of the strategic component.
This will have two main advantages. Firstly, it will make it easier for new re-
searchers to develop negotiating Diplomacy players as they will not have to waste
time on the development of a strategic player. Secondly, if they do have access to
another strategic component, it will allow them to compare to what extent their
negotiation algorithms depend on the underlying strategic component.

We also think that D-Brane can be very useful for researchers who would
like to use Diplomacy to study the topics of Trust, Coalition Formation, and
Argumentation Based Negotiation. They could use the strategic module of D-
Brane as the basis for their algorithms so that they do not have to build an
entirely new agent from scratch.

So far, we have not compared D-Brane in any way with human players. It would
be very interesting to see to what extent D-Brane makes moves that are similar to
those of expert players and how well it plays against humans. For this however, we
need to set up an environment that allows humans to play against software agents

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 27

and negotiate with them. Also, we would need some tools that allow experts to
analyze the moves made by D-Brane afterwards. Part of this infrastructure already
exists, but it is currently not ready to perform such experiments. Therefore, we
have to defer such experiments to the future.

Furthermore, we are planning to further develop D-Brane’s negotiation algo-
rithm so that it may make more sophisticated deals rather than just battle plans
for the current round. We will make D-Brane think more steps ahead instead,
which will not only improve the strategic play, but will also allow for more in-
teresting deals, because deals may then involve orders made in several rounds,
rather then just the current round. Also, we plan to endow the DumbBot with our
negotiation algorithm, to see if negotiations in that case have a greater impact.

Finally, we would like to see if our approach for solving COGs indeed can be
generalized. We may for example define games in Game Description Language
(GDL) [13] so that the strategic component can decompose the game into micro-
games at runtime.

Appendix A

Our experiments are largely implemented using the DipGame framework. How-
ever, we have implemented a couple of new tools on top of DipGame to make
experimentation easier. We have combined these tools into a new extension of
DipGame, that we call BANDANA (BAsic eNvironment for Diplomacy playing
Automated Negotiating Agents). It includes the following components:

– A new negotiation server.
– A new negotiation language, which we find simpler to use than DipGame’s

default language.
– A Notary agent, for the implementation of the Unstructured Negotiation Pro-

tocol, as explained in Section 4.
– Several example agents, including D-Brane and DumbBot.
– The strategic component of D-Brane.
– Example code that shows how one can implement a negotiating agent on top

of D-Brane’s strategic component.
– An Adjudicator which, given a set of orders for all units, determines which of

those orders are successful.
– A Game Builder, which allows users to set up a customized board configuration.

This can be useful for testing.

The BANDANA framework can be downloaded from:
http://www.iiia.csic.es/~davedejonge/bandana.

More details about BANDANA’s negotiation language and its other tools can
be found in the manual which can also be downloaded from the same address.

Appendix B

We here give a more thorough definition of the one-shot game Dipε. We claim that
Dipε can be modeled as a COG, and that a single round of Diplomacy can be seen
as an instance of the negotiation game N (Dipε).

28 Dave de Jonge, Carles Sierra

Definition 9 Let ε denote a configuration of units on the Diplomacy map. Then
Dipε is defined by the tuple:

(Gr, SC, P lDip, (Units1, . . . Units7), loc, (fDipε1 . . . fDipε7)).

Here, Gr is a symmetric graph, of which the vertices are called provinces. The
set of provinces is denoted Prov and we use the notation adj(p, q) to state that
provinces p and q are adjacent in the graph. The set of Supply Centers SC is a
subset of Prov. The set PlDip represents the 7 players: PlDip = {α1, . . . α7}. For
each player αi there is a finite set Unitsi, which we call the set of units owned
by αi. These sets are all disjoint: i 6= j ⇒ Unitsi ∩ Unitsj = ∅. The set of all

units is denoted: Units =
⋃7
i=1 Unitsi . The state ε of the game implicitly defines

an injective function loc : Units → Prov that assigns a province (the location of

u) to any unit u. In order to define the utility functions fDipεi we first need to
define several other concepts.

Given the state ε we can define the set of possible orders Ordε:

Ordε = Mtoε
⋃

Supε

Mtoε = {(u, p) ∈ Units× Prov | p = loc(u) ∨ adj(p, loc(u))}
Supε = {(u, u′) ∈ Units× Units | u 6= u′}

The orders in Mtoε are called move-to orders11 and the orders in Supε are called
support orders. We use the notation Ordεu to denote the subset of Ordε consisting
of all possible orders for a given unit u.

Ordεu = Mtoεu
⋃

Supεu

Mtoεu = {(u′, p) ∈Mtoε | u′ = u}

Supεu = {(u′, u′′) ∈ Supε | u′ = u}

Furthermore, we will use Ordεi to denote the set possible orders for any unit of
player αi:

Ordεi =
⋃

u∈Unitsi

Ordεu

Ordε−i = Ordε \Ordεi

and for a set of players C ⊂ Pl we define:

OrdεC =
⋃
αi∈C

Ordεi

Ordε−C = Ordε \OrdεC
We use similar notation conventions for other sets, such as Units, Mtoε and Supε.

An action µi for a player αi in Dipε is then defined as a set of orders, containing
exactly one order for each of αi’s units:

MDipε
i = {µi ⊂ Ordεi | ∀u ∈ Unitsi : |Ordεu ∩ µi| = 1} (4)

11 In this model we consider hold orders as a special kind of move-to order, for which the
destination is the current location of the unit: p = loc(u).

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 29

Definition 10 If αi plays an action µi that contains order o then we say that αi
submits the order o. If µ = (µ1, µ2, ...µ7) is an action profile then µ̂ denotes the
set of all orders submitted by all players:

µ̂ =
7⋃
i=1

µi

Definition 11 A support order (u, u′) ∈ Supε is considered valid, for an action
profile µ, if µ̂ contains a move-to order (u′, p) ∈ Mtoε where p is adjacent to the
location of u. This is denoted by the predicate val(µ, u, u′).

val(µ, u, u′) ⇔ ∃p ∈ Prov : (u′, p) ∈ µ̂ ∧ adj(p, loc(u))

The rules of Diplomacy specify that players may only submit support orders that
are valid.

Definition 12 Given an action profile µ, a support (u, u′) ∈ Supεu in µ̂ is said to
be cut if µ̂ also contains a move-to order that moves to the location of u:

cut(µ, u) ⇔ ∃(u, u′) ∈ µ̂ ∧ ∃(u′′, p) ∈ µ̂ ∧ p = loc(u)

Definition 13 The set of successful supports of u in an action profile µ is defined
as those orders that support u, and that are valid and not cut:

SucSupµ,u = {(u′, u) ∈ µ̂ | val(µ, u′, u) ∧ ¬cut(µ, u′)}

Definition 14 The force s(µ, u, p) exerted by unit u on province p is defined as:

s(µ, u, p) =


1.5 + |SucSupµ,u| if (u, p) ∈ µ̂ ∧ p = loc(u)

1 + |SucSupµ,u| if (u, p) ∈ µ̂ ∧ p 6= loc(u)

0 otherwise

Definition 15 We say a player αi conquers a province p if αi has a unit that
exerts more force on p than any other unit:

conq(µ, i, p)⇔ ∃u ∈ Unitsi ∀u′ ∈ Units \ {u} : s(µ, u, p) > s(µ, u′, p)

Finally, we can define the utility function fDipεi for a player αi as the number of
Supply Centers he or she conquers:

fDipεi (µ) = |{p ∈ SC | conq(µ, i, p)}| (5)

A natural way to play Diplomacy is to determine for each Supply Center sepa-
rately whether, and how, it can be conquered. However, the decision how to attack
one Supply Center may restrict the possibilities to attack another Supply Center
if the same units are involved. This is the essence of a COG. Therefore, we will
now show how Dipε can be modeled as a COG.

We define the set of units of player αi involved in province p as those units that
may move to p, hold in p, support a unit holding in or moving to p, or that may
cut any opponent unit that could give support to another opponent unit holding
in p or moving to p. This set is denoted by Unitsp,i. More precisely, it consists of
all units next to or inside p, and all units located next to an opponent’s unit that
is located next to p:

30 Dave de Jonge, Carles Sierra

Definition 16 The set of units of player αi involved in province p, denoted
Unitsp,i is defined as:

Unitsp,i = MayAttackOrSupportp,i ∪MayCutp,i

MayAttackOrSupportp,i = {u ∈ Unitsi | loc(u) = p ∨ adj(p, loc(u))

MayCutp,i = {u ∈ Unitsi | ∃u′ ∈ Units−i : adj(loc(u), loc(u′)) ∧

(loc(u′) = p ∨ adj(p, loc(u′)))}

We model Dipε as a COG by defining a micro-game Dipε,p for each Supply
Center p ∈ SC. An action in such a micro-game consists of a set of orders containing
maximally 1 order for each unit of player αi involved in Supply Center p:

MDipε,p
i = {µp,i ⊂

⋃
u∈Unitsp,i

Ordεu | ∀u ∈ Unitsp,i : |µp,i ∩Ordεu| ≤ 1}

Note that in this definition a player is not required to submit an order to each unit
involved in p. This is because that unit may instead be used to attack or defend
another province p′.

This definition implies that there are binary constraints between the micro-
games, because a unit may be involved in more than one province. Two actions
µp,i and µq,i are incompatible if for any unit involved in both provinces, two
different orders are submitted. That is, µp,i and µq,i are compatible iff the following
restriction holds:

∀u ∈ Unitsi : |(µp,i ∪ µq,i) ∩Ordεu| ≤ 1 (6)

We define the utility function of the micro-game Dipε,p to be:

f
Dipε,p
i (µp) =

{
1 if conq(µp, i, p)

0 otherwise
(7)

Here, µp is an action profile in the micro-game Dipε,p. The question whether
conq(µ, i, p) holds only depends on the orders submitted for the units involved in
p. Therefore, if µ̂p is a subset of µ̂ then conq(µp, i, p) holds iff conq(µ, i, p) holds,
which means that equations (5) and (7) are consistent with (1).

In the following, we use the notation UnitsC , for a set of players C (a ‘coalition’)
to denote the union of the units of those players:

UnitsC =
⋃
αi∈C

Unitsi

Units−C = Units \ UnitsC

Definition 17 Let C denote a coalition containing player αi, then a battle plan

β for αi and Supply Center p is a set of orders β ⊂ Ordε of the form:

β = {(u, p)} ∪ Supports ∪ Cuts

with u ∈ Unitsi, and Supports ⊆ SupεC is a (possibly empty) set of support orders
(u′, u) that support u and Cuts ⊆MtoεC a (possibly empty) set of orders that aim
to cut any opponent unit that may support a hostile move into p:

(u′′, p′) ∈ Cuts ⇒ ∃u′ ∈ Units−C : loc(u′) = p′ ∧ adj(p′, p)

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 31

Furthermore we have the restriction that β can contain at most one order for each
unit:

∀u ∈ Units : |β ∩Ordu| ≤ 1

The set of all battle plans for player αi on Supply Center p is denoted Bεi,p.

Definition 18 Given a set of deals X, an invincible plan is a battle plan β ∈ Bεi,p
for some province p and some player αi that for every action profile that satisfies X
and in which all orders of β are submitted αi will conquer p. That is, β is invincible
iff the following holds:

∀µ ∈MDipε[X] : β ⊂ µ̂ ⇒ conq(µ, i, p)

Furthermore, we can determine all invincible pairs:

Definition 19 Given a set of deals X, an invincible pair is a pair of battle plans
(β1, β2) ∈ Bεi,p × B

ε
i,q for two provinces p, q and some player αi that guarantees

player αi to either conquer p or conquer q:

∀µ ∈MDipε[X] : β1 ∪ β2 ⊂ µ̂ ⇒ conq(µ, i, p) ∨ conq(µ, i, q)

References

1. An B, Sim KM, Tang L, Li S, Cheng D (2006) Continuous time negotiation
mechanism for software agents. IEEE Trans on Systems, Man and Cybernetics,
Part B: Cybernetics 36(6):1261–1272

2. An B, Gatti N, Lesser V (2009) Extending alternating-offers bargaining
in one-to-many and many-to-many settings. In: Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and In-
telligent Agent Technology - Volume 02, IEEE Computer Society, Washing-
ton, DC, USA, WI-IAT ’09, pp 423–426, DOI 10.1109/WI-IAT.2009.188, URL
http://dx.doi.org/10.1109/WI-IAT.2009.188

3. Baarslag T, Hindriks K, Jonker CM, Kraus S, Lin R (2010) The first auto-
mated negotiating agents competition (ANAC 2010). In: Ito T, Zhang M, Robu
V, Fatima S, Matsuo T (eds) New Trends in Agent-based Complex Automated
Negotiations, Series of Studies in Computational Intelligence, Springer-Verlag

4. Dechter R, Mateescu R (2007) And/or search spaces for graphical mod-
els. Artificial Intelligence 171(23):73 – 106, DOI http://dx.doi.org/10.1016/
j.artint.2006.11.003, URL http://www.sciencedirect.com/science/article/

pii/S000437020600138X

5. Dimopoulos Y, Moraitis P (2011) Advances in argumentation based negotia-
tion. Negotiation and Argumentation in Multi-agent Systems: Fundamentals,
Theories, Systems and Applications pp 82–125

6. Endriss U (2006) Monotonic concession protocols for multilateral negotia-
tion. In: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, ACM, New York, NY, USA, AAMAS ’06, pp
392–399, DOI 10.1145/1160633.1160702, URL http://doi.acm.org/10.1145/

1160633.1160702

7. Fabregues A (2014) Facing the challenge of automated negotiations with hu-
mans. PhD thesis, Universitat Autònoma de Barcelona

32 Dave de Jonge, Carles Sierra

8. Fabregues A, Sierra C (2011) Dipgame: a challenging negotiation testbed.
Engineering Applications of Artificial Intelligence

9. Faratin P, Sierra C, Jennings NR (1998) Negotiation decision functions for
autonomous agents. Robotics and Autonomous Systems 24(3-4):159 – 182,
DOI 10.1016/S0921-8890(98)00029-3, URL http://www.sciencedirect.com/

science/article/pii/S0921889098000293, multi-Agent Rationality
10. Faratin P, Sierra C, Jennings NR (2000) Using similarity criteria to make

negotiation trade-offs. In: International Conference on Multi-Agent Systems,
ICMAS’00, pp 119–126

11. Fatima S, Wooldridge M, Jennings NR (2009) An analysis of feasible solu-
tions for multi-issue negotiation involving nonlinear utility functions. In: Pro-
ceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, AAMAS ’09, pp 1041–1048,
URL http://dl.acm.org/citation.cfm?id=1558109.1558158

12. Ferreira A, Lopes Cardoso H, Paulo Reis L (2015) Dipblue: A diplomacy agent
with strategic and trust reasoning. In: 7th International Conference on Agents
and Artificial Intelligence (ICAART 2015), pp 398–405

13. Genesereth M, Love N, Pell B (2005) General game playing: Overview of the
aaai competition. AI Magazine 26(2):62–72

14. Hemaissia M, El Fallah Seghrouchni A, Labreuche C, Mattioli J (2007) A mul-
tilateral multi-issue negotiation protocol. In: Proceedings of the 6th interna-
tional joint conference on Autonomous agents and multiagent systems, ACM,
New York, NY, USA, AAMAS ’07, pp 155:1–155:8, DOI 10.1145/1329125.
1329314, URL http://doi.acm.org/10.1145/1329125.1329314

15. Ito T, Klein M, Hattori H (2008) A multi-issue negotiation protocol among
agents with nonlinear utility functions. Multiagent Grid Syst 4:67–83, URL
http://dl.acm.org/citation.cfm?id=1378675.1378678

16. de Jonge D, Sierra C (2015) NB3: a multilateral negotiation algorithm for
large, non-linear agreement spaces with limited time. Autonomous Agents and
Multi-Agent Systems 29(5):896–942, DOI 10.1007/s10458-014-9271-3, URL
http://www.iiia.csic.es/files/pdfs/jaamas%20NB3.pdf

17. Klein M, Faratin P, Sayama H, Bar-Yam Y (2003) Protocols for negotiating
complex contracts. Intelligent Systems, IEEE 18(6):32 – 38, DOI 10.1109/MIS.
2003.1249167

18. Koenig S, Tovey C, Lagoudakis M, Markakis V, Kempe D, Keskinocak P,
Kleywegt A, Meyerson A, Jain S (2006) The power of sequential single-item
auctions for agent coordination. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp 1625–1629

19. Krishna V, Serrano R (1996) Multilateral bargaining. Review of Economic
Studies 63(1):61–80, URL http://EconPapers.repec.org/RePEc:bla:restud:

v:63:y:1996:i:1:p:61-80

20. Lai G, Sycara K, Li C (2008) A decentralized model for automated multi-
attribute negotiations with incomplete information and general utility func-
tions. Multiagent Grid Syst 4:45–65, URL http://dl.acm.org/citation.cfm?

id=1378675.1378677

21. Marsa-Maestre I, Lopez-Carmona MA, Velasco JR, de la Hoz E (2009) Effec-
tive bidding and deal identification for negotiations in highly nonlinear sce-
narios. In: Proceedings of The 8th International Conference on Autonomous

D-Brane: a Diplomacy Playing Agent for Automated Negotiations Research 33

Agents and Multiagent Systems - Volume 2, International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC, AAMAS ’09, pp
1057–1064, URL http://dl.acm.org/citation.cfm?id=1558109.1558160

22. Marsa-Maestre I, Lopez-Carmona MA, Velasco JR, Ito T, Klein M, Fujita K
(2009) Balancing utility and deal probability for auction-based negotiations
in highly nonlinear utility spaces. In: Proceedings of the 21st International
Jont Conference on Artifical Intelligence, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, IJCAI’09, pp 214–219, URL http://dl.acm.org/

citation.cfm?id=1661445.1661480

23. Nash J (1950) The bargaining problem. ”Econometrica” ”18”:155–162
24. Nash J (1951) Non-cooperative games. Annals of Mathematics 54(2):pp. 286–

295, URL http://www.jstor.org/stable/1969529

25. Nguyen TD, Jennings NR (2004) Coordinating multiple concurrent negoti-
ations. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems - Volume 3, IEEE Computer So-
ciety, Washington, DC, USA, AAMAS ’04, pp 1064–1071, DOI 10.1109/
AAMAS.2004.94, URL http://dx.doi.org/10.1109/AAMAS.2004.94

26. Poundstone W (1993) Prisoner’s Dilemma, 1st edn. Doubleday, New York,
NY, USA

27. Rosenschein JS, Zlotkin G (1994) Rules of Encounter. The MIT Press, Cam-
bridge, USA

28. Rossi F, Beek Pv, Walsh T (2006) Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA

29. S Kraus DL (1995) Designing and building a negotiating automated agent.
Computational Intelligence 11:132–171

30. S Kraus EE D Lehman (1989) An automated diplomacy player. In: Levy D,
Beal D (eds) Heuristic Programming in Artificial Intelligence: The 1st Com-
puter Olympia, Ellis Horwood Limited, pp 134–153

31. Serrano R (2008) bargaining. In: Durlauf SN, Blume LE (eds) The New Pal-
grave Dictionary of Economics, Palgrave Macmillan, Basingstoke

32. Sierra C, Jennings NR, Noriega P, Parsons S (1997) A framework for
argumentation-based negotiation. In: International Workshop on Agent The-
ories, Architectures, and Languages, Springer, pp 177–192

33. Sycara KP (1990) Persuasive argumentation in negotiation. Theory and De-
cision 28(3):203–242, DOI 10.1007/BF00162699, URL http://dx.doi.org/10.

1007/BF00162699

