
A Rule-based Approach to Norm-Oriented
Programming of Electronic Institutions

A. Garcı́a-Camino, J.A. Rodrı́guez-Aguilar and C. Sierra
IIIA-CSIC, Spain
{andres,jar,sierra}@iiia.csic.es
and
W. Vasconcelos
University of Aberdeen, United Kingdom
wvasconcelos@acm.org

Norms constitute a powerful coordination mechanism among heterogeneous agents. We propose
means to specify and explicitly manage the normative positions of agents (permissions, prohibi-
tions and obligations), with which distinct deontic notions and their relationships can be captured.
Our rule-based formalism includes constraints for more expressiveness and precision and allows
the norm-oriented programming of electronic institutions: normative aspects are given a precise
computational interpretation. Our formalism has been conceived as a machine language to which
other higher-level normative languages can be mapped, allowing their execution, as we illustrate
with a selection of examples from the literature.

Categories and Subject Descriptors: I.2.1 [Artificial Intelligence]: Applications and Expert Systems—Law;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multi-agent systems

General Terms: Languages

Additional Key Words and Phrases: Norms, electronic institutions, programming, auctions

1. INTRODUCTION

A major challenge in multi-agent system (MAS) research is the design and implementa-
tion of openmulti-agent systems in which coordination must be achievedamong agents
defined with different languages by several designers who may not trust each other [Jen-
nings et al. 1998]. Norms can be used for this purpose as a means to regulate the observable
behaviour of agents as they interact in pursuit of their goals [Wooldridge 2002; Axelrod
1997; Dignum 1999; López y López 2003]. There is a wealth ofsocio-philosophical and
logic-theoretical literature on the subject of norms (e.g., [Sergot 2001; Shoham and Ten-
nenholtz 1995]), and, more recently, much attention is being paid to more pragmatic and
implementational aspects of norms, that is, how norms can begiven a computational in-

This work was partially funded by the Spanish Science and Technology Ministry as part of the Web-i-2 project
(TIC-2003-08763-C02-00). Garcia-Camino enjoys an I3P grant from the Spanish Council for Scientific Research
(CSIC).
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2006 ACM /2006/-0033 $5.00

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006, Pages 33–40.

34 · Andrés Garcı́a-Camino et al.

terpretation and how norms can be factored in in the design and execution of MASs (e.g.
[Artikis et al. 2005; Garcı́a-Camino et al. 005a; Garcı́a-Camino et al. 005b]).

A normative position [Sergot 2001] is the “social burden” associated with individual
agents, that is, their obligations, permissions and prohibitions. Depending on what agents
do, their normative positions may change – for instance, permissions/prohibitions can be
revoked or obligations, once fulfilled, may be removed. Ideally, norms, once captured
via some suitable formalism, should be directly executed, thus realising a computational,
normative environment wherein agents interact. This is what we mean bynorm-oriented
programming. We try to make headway along this direction by introducing an executable
language to specify agents’normative positionsand manage their changes as agents inter-
act via speech acts [Searle 1969].

In this paper we present a language that acts as a “machine language” for norms on
top of which higher-level normative languages can be accommodated. This language can
represent distinct flavours of deontic notions and relationships. Although our language
is rule-based, we achieve greater flexibility, expressiveness and precision than production
systems by allowing constraints to be part of our rules and states of affairs. In this way,
normative positions can be further refined. For instance, picture a selling agent that is
obliged to deliver a good satisfying some quality requirements before a deadline. Notice
that both the quality requirements and the delivery deadline can be regarded as constraints
that must be considered as part of the obligations. Thus, when the agent delivers the
good satisfying all the constraints, we should regard the obligation as fulfilled. Notice
too that since the deadline might eventually be changed, we also require the capability of
modifying constraints at run-time. Hence, constraints areconsidered as first-class citizens
in our language.

Although in this paper we restrict to a particular class of MASs, namely electronic in-
stitutions [Esteva 2003], our work sets the foundations to specify and implement open
regulated MASs via norms.

The structure of this paper is as follows. In the next sectionwe present desirable prop-
erties of normative languages. In section 3 we propose a simple normative language that
covers all these requirements along with a sketch of an implementation of an interpreter.
Section 4 summarises electronic institutions and explainshow we capture normative posi-
tions of participating agents. We put our language to use by specifying the Dutch Auction
protocol in section 5. Finally, we draw conclusions and outline future work in section 6.

2. DESIDERATA FOR NORM-ORIENTED MAS PROGRAMMING

Our main goal is to produce a language that supports the specification of coordination
mechanisms in multi-agent systems by means of norms. For this purpose, we identify
below the desirable features we expect in candidate languages.

Explicit management of normative positions. As a result of agents’ observable, social
interactions, their normative positions [Sergot 2001] change. Hence, the first requirement
of our language is to support theexplicit managementof agents’ normative positions.

General purpose. We require that our language captures different deontic notions along
with their relationships. In other words, the language mustbe ofgeneral purposeso that
it helps MAS designers to encode any axiomatisation, and thus specify the widest range of
normative systems as possible.

Pragmatic. In a sense, we pursue a “machine language” for norms on top of which
higher-level languages may be accommodated. Along this direction, and from a language

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

A Rule-based Approach to Norm-Oriented Programming of Electronic Institutions · 35

designer’s point of view, it is fundamental to identify thenorm patterns(e.g., conditional
obligation, time-based permissions and prohibitions, continuous obligation, and so on) in
the literature to ensure that the language supports their encoding1. In this way, not only
shall we be guaranteeing the expressiveness of our language, but also addressing pragmatic
concerns by providingdesign patternsto guide and ease MAS design.

Declarative. In order to ease MAS programming, we shall also require our language
to bedeclarative, with an implicit execution mechanism to reduce the number of issues
designers ought to concentrate on. As an additional benefit,we expect its declarative nature
to facilitate verification of properties of the specifications.

3. A RULE LANGUAGE FOR NORMS

The building blocks of our language are first-order terms (denoted asτ) and implicitly,
universally quantified atomic formulae (denoted asα) without free variables . We shall
make use of numbers and arithmetic functions to build terms;arithmetic functions may
appear infix, following their usual conventions2. We also employ arithmetic relations (e.g.,
=, 6=, and so on) as predicate symbols, and these will appear in their usual infix notation
with their usual meaning. Atomic formulae with arithmetic relations representconstraints
on their variables and have a special status, as we explain below. We give a definition of
our constraints, a subset of atomic formulae: a constraintγ is an atomic formula of the
form τ C τ ′, whereC∈ {=, 6=, >,≥, <,≤}.

We need to differentiate ordinary atomic formula from constraints. We shall useα′ to
denote atomic formulae that arenot constraints.

Intuitively, a state of affairs is a set of atomic formulae. As we will show below, they can
store the state of the environment3, observable agent attributes and the normative positions
of agents:

A state of affairs∆ = {α0, . . . , αn} is a a finite and possibly empty set of implicitly,
universally quantified atomic formulaeαi, 0 ≤ i ≤ n, n ∈ IN .

Our rules are constructs of the formLHS RHS, whereLHScontains a representation
of parts of the current state of affairs which, if they hold, will cause the rule to be triggered.
RHSdepicts the updates to the current state of affairs, yielding the next state of affairs:

A rule, denoted asR, is defined as:

R ::= LHS RHS
LHS ::= LHS∧ LHS| ¬(LHS∧ LHS) | Lit

RHS ::= U ∧ RHS|U
Lit ::= α | ¬α | x = {α′|LHS∗}
U ::= ⊕α | 	 α

wherex is a variable name; andLHS∗ is aLHSwithout set constructors.
The Us represent the updates: they add (via operator⊕) or remove (via operator)

atomic formulaeαs. Furthermore, we make use of a special kind of term, called aset
constructor, represented as{α′|LHS∗}. This construct is useful when we need to refer to
all α′s in the state of affairs for whichLHS∗ holds. For instance,{p(A, B)|A > 20∧B <

1This is elaborated inhttp://www.iiia.csic.es/∼andres/NOPLforEIs.pdf
2We adopt Prolog’s convention using strings starting with a capital letter to represent variables and strings starting with a small
letter to represent constants.
3We refer to thestate of the environmentas the set of atomic formulae that represent aspects of the environment in a given point
in time.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

36 · Andrés Garcı́a-Camino et al.

100} stands for the set of atomic formulaep(A, B) such thatA is greater than 20 andB is
less than 100.

We need to refer to the set of constraints that belongs to a state of affairs. We call
Γ = {γ0, . . . , γn} the set of all constraints in∆.

Given a state of affairs∆, relationshipconstrs(∆, Γ) holds iff Γ is the smallest set such
that for everyγ ∈ ∆ thenγ ∈ Γ.

In the definitions below we rely on the concept ofsubstitution, that is, the set of values
for variables in a computation [Fitting 1990]: a substitution σ = {x0/τ0, . . . , xn/τn} is
a finite and possibly empty set of pairsxi/τi, 0 ≤ i ≤ n, n ∈ IN . The application of a
substitution toαs is as follows: 1.c · σ = c for a constantc; 2. x · σ = τ · σ if x/τ ∈ σ;
otherwisex · σ = x; 3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

We now define the semantics of our rules as relationships between states of affairs: rules
map an existing state of affairs to a new state of affairs. We adopt the usual semantics of
production rules, that is, we exhaustively apply each rule by matching itsLHSagainst the
current state of affairs and use the values of variables obtained in this match to instantiate
the RHSvia s

∗: s
∗(∆, LHS RHS, ∆′) holds iff s

∗
l (∆, LHS, {σ1, . . . , σn}) andsr(∆,

RHS· σi, ∆
′), 1 ≤ i ≤ n, n ∈ IN , hold.

That is, two states of affairs∆ and∆′ are related by a ruleLHS RHSif, and only
if, we obtain all different substitutions{σ1, . . . , σn} that make the left-hand side match∆
and apply these substitutions toRHS(that is,RHS· σi) in order to build∆′.

Our rules areexhaustivelyapplied on the state of affairs thus considering all match-
ing atomic formulae. We thus need relationships

∗
l (∆, LHS, Σ) which obtains inΣ =

{σ0, . . . , σn} all possible matches of the left-hand side of a rule:s
∗
l (∆, LHS, Σ) holds, iff

Σ = {σ1, . . . , σn} is the largest non-empty set such thatsl(∆, LHS, σi), 1 ≤ i ≤ n, n ∈
IN , holds.

We now define the semantics of theLHS of a rule: sl(∆, LHS, σ) holds between state
∆, the left-hand side of a ruleLHSand a substitutionσ depending on the format ofLHS:

(1) sl(∆, LHS ∧ LHS′, σ) holds iff sl(∆, LHS, σ′) and sl(∆, LHS′, σ′′) hold andσ =
σ′ ∪ σ′′.

(2) sl(∆,¬LHS, σ) holds iff sl(∆, LHS, σ) does not hold.
(3) sl(∆, α′, σ) holds iff α′ · σ ∈ ∆ andconstrs(∆, Γ) andsatisfiable(Γ · σ) hold.
(4) sl(∆, γ, σ) holds iff constrs(∆, Γ) andsatisfiable((Γ ∪ {γ}) · σ) hold.
(5) sl(∆, x = {α′|LHS∗}, σ) holds iff σ = {x/{α′ · σ1, . . . , α

′ · σn}} for the largest
n ∈ IN such thatsl(∆, α′ ∧ LHS ∗, σi), 1 ≤ i ≤ n

Cases 1-3 depict the semantics of atomic formulae and how their individual substitutions
are combined to provide the semantics for a conjunction. Case 4 formalises the semantics
of our constraints when they appear on the left-hand side of arule: we apply the substi-
tutionσ to them (thus reflecting any values of variables given by the matchings of atomic
formula), then check satisfiability of constraints.4 Case 5 specifies the semantics forset
constructors: x is the set of atomic formulae that satisfy the conditions of the set construc-
tor.

We now define the semantics of theRHSof a rule: relationsr(∆, RHS, ∆′) mapping a
state∆, the right-hand side of a ruleRHSand a new state∆′ is defined as:

(1) sr(∆, (U ∧ RHS), ∆′) holds iff bothsr(∆, U, ∆1) andsr(∆1, RHS, ∆′) hold.

4Our work builds on standard technologies for constraint solving – in particular, we have been experimenting with SICStus
Prolog constraint satisfaction libraries.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

A Rule-based Approach to Norm-Oriented Programming of Electronic Institutions · 37

(2) sr(∆,⊕α′, ∆′) holds iff ∆′ = ∆ ∪ {α′}.
(3) sr(∆,⊕γ, ∆′) = true iff constrs(∆, Γ) andsatisfiable(Γ ∪ {γ}) hold and∆′ =

∆ ∪ {γ}.
(4) sr(∆,	α, ∆′) holds iff ∆′ = ∆ \ {α}

Case 1 decomposes a conjunction and builds the new state by merging the partial states of
each update. Case 2 caters for the insertion of atomic formulaeα′ which do not conform
to the syntax of constraints. Case 3 defines how a constraint is added to a state∆: the new
constraint is checked whether it can be satisfied with constraintsΓ and then it is added to
∆′. Case 4 caters for the removal of atomic formulae.

We extends∗ to handle sets of rules:s∗(∆0, {R1, . . . , Rn}, ∆n) holds iff s∗(∆i−1, Ri,
∆i), 1 ≤ i ≤ n hold. The semantics above define an infinite sequence of states 〈∆0,
∆1, . . .〉 if s

∗(∆i, {R1, . . . , Rn}, ∆i+1), that is,∆i+1 (obtained by applying the rules to
∆i) is used to obtain∆i+2 and so on. Fig. 1 illustrates how this sequence can accommodate
the intervention of agents sending/receiving messages. The diagram shows an initial state

∆0 V

∆0

α
0

1
, · · · , α

0
n

l l
ag1 · · · ag

n

∗

 ∆1 V

∆1

α
1

1
, · · · , α

1
m

l l
ag1 · · · ag

m

∗

 · · ·

Fig. 1. Semantics as a Sequence of∆’s

∆0 (possibly empty) that is offered (represented by “V”) to a set of agents{ag1, . . . , agn}.
These agents exchange messages, adding a record (via “l”) {α0

1, . . . , α
0
n} of these mes-

sages to∆0. After the agents add their utterances, then the rules are exhaustively applied
(represented by “

∗
 ”) to ∆0 ∪ {α0

1, . . . , α
0
n}. The resulting state∆1 is, on its turn, offered

to agents, and so on.

4. ELECTRONIC INSTITUTIONS

Our work extendselectronic institutions(EIs) [Esteva 2003], providing them with an ex-
plicit normative layer. There are two major features in EIs –thestatesandillocutions(i.e.,
messages) uttered (i.e., sent) by those agents taking part in the EI. The states are connected
via edges labelled with the illocutions that ought to be sentat that particular point in the
EI. Another important feature in EIs are the agents’roles: these are labels that allow agents
with the same role to be treated collectively thus helping engineers abstract away from in-
dividuals. We define below the class of illocutions we aim at –these are a special kind of
term: illocutionsI are termsp(ag , r , ag ′, r ′, τ, t) wherep is an illocutionary particle (e.g.,
inform,ask); ag , ag ′ are agent identifiers;r, r′ are role labels;τ is a term with the actual
content of the message andt ∈ IN is a time stamp. We shall refer to illocutions that may
have uninstantiated (free) variables asillocution schemes, denoted bȳI.

Another important concept in EIs we employ here is that of ascene. Scenes offer means
to break down larger protocols into smaller ones with specific purposes. We can uniquely
refer to the point of the protocol where an illocutionI was uttered by the pair(s, w) where
s is a scene name andw is the state from which an edge labelled withĪ leads to another
state.

We differentiate seven kinds of atomic formulae in our stateof affairs∆, with the fol-
lowing intuitive meanings:

(1) ground formulaeoav (o, a, v) – object (or agent)o has an attributea with valuev.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

38 · Andrés Garcı́a-Camino et al.

(2) ground formulaeatt(s, w, I) – an agent attempted to get illocutionI accepted at state
w of scenes.

(3) ground formulaeutt(s, w, I) – I was accepted as a legal utterance atw of s.
(4) ground formulaectr(s, w, ts) – the execution of scenes reached statew at timets.
(5) obl(s, w, Ī) – Ī ought to be uttered atw of s.
(6) per(s, w, Ī) – Ī is permittedto be uttered atw of s.
(7) prh(s, w, Ī) – Ī is prohibitedatw of s.

We only allow fully ground attributes, illocutions and state control formulae (cases 1-4
above) to be present5; however, in formulae 5-7s andw may be variables and̄I may contain
variables. We shall use formulae 4 to represent state changein a scene in relationship with
global time passing. We shall use formulae 5–7 above to represent normative positions of
agents within EIs. This allow us to explicitly manage normative positions of agents in our
language. We have thus addressed another requirement laid out in section 2.

5. EXAMPLE: THE DUTCH AUCTION

We now illustrate the pragmatics of our norm-oriented language by specifying the auction
protocol for a fish market as described in [Noriega 1997], a variation of the traditional
Dutch auction protocol that proceeds as follows: (1) The auctioneer chooses a good out of
a lot of goods that is sorted according to the order in which sellers deliver their goods to the
sellers’ admitter; (2) with a chosen good, the auctioneer opens abidding roundby quoting
offers downward from the good’s starting price, previouslyfixed by a sellers’ admitter, as
long as these price quotations are above areserve pricepreviously defined by the seller;
(3) for each price the auctioneer calls, several situationsmight arise during the open round
described below.(4) The first three steps repeat until thereare no more goods left.

The situations arising in step 3 are:Multiple bids – Several buyers submit their bids at
the current price. In this case, a collision comes about, thegood is not sold to any buyer,
and the auctioneer restarts the round at a higher price;One bid – Only one buyer submits a
bid at the current price. The good is sold to this buyer whenever his credit can support his
bid. Otherwise, the round is restarted by the auctioneer at ahigher price, the unsuccessful
bidder is fined;No bids – No buyer submits a bid at the current price. If the reserve price
has not been reached yet, the auctioneer quotes a new price obtained by decreasing the
current price according to the price step. Otherwise, the auctioneer declares the good as
withdrawnand closes the round.

5.1 Proposed Solution

We show our solution in Fig. 2. The rules are:I. Multiple bids – it obliges the auctioneer
to inform the buyers, whenever a collision comes about, about the collision and to restart
the bidding round at a higher price (in this case, 120% of the collision price). Notice
that X will hold all the utterances at scenedutch and statew4 issued by buyer agents
that bid for an itemIt at priceP at timeT0 after the last offer. We obtain the last offers
by checking that there are no further offers whose time-stamps are greater than the time-
stamp of the first one. If the number of illocutions inX is greater than one, the rule fires
the obligation above.II. One bid/winner determination – If only one bid has occurred
during the current bidding round and the credit of the bidding agent is greater than or equal

5We allow agents to utter whatever they want (viaatt formulae). However, the illegal utterances may be discarded and/or may
cause sanctions, depending on the deontic notions we want orneed to implement. Theutt formulae are thusconfirmationsof the
att formulae.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

A Rule-based Approach to Norm-Oriented Programming of Electronic Institutions · 39

`

X =
˘

α0 α1 ∧ ¬(α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧ |X| > 1
´

`

⊕α3 ∧ ⊕α4 ∧ ⊕(P2 > P ∗ 1.2)
´

where

8

>

>

>

<

>

>

>

:

α0 = utt(dutch, w4, inform(A1, buyer, Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer, collision(It, P), T2))
α4 = obl(dutch, w3, inform(Au, auct, all, buyer, offer(It, P2), T3))

(I)

„

X =
˘

α0 α1 ∧ ¬(α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧
|X| = 1 ∧ oav(A1, credit, C) ∧ C ≥ P

«

`

⊕α3

´

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer, Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer, sold(It, P, A1), T4))

(II)

`

α0 ∧ ¬(α1 ∧ T2 > T) ∧ oav(Ag, credit, C) ∧ C < P
´

`

⊕α2

´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, A, buyer, offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer, offer(It, P), T2))
α2 = prh(dutch, w4, inform(A, buyer, Au, auct, bid(It, P2), T3))

(III)

„

X =
˘

α0 α1 ∧ ¬(α2 ∧ T2 > T1) ∧ T0 > T1

¯

∧
|X| = 1 ∧ oav(A1, credit, C) ∧ C < P

«

0

@

	oav(A1, credit, C)∧
⊕oav(A1, credit, C2) ∧⊕α3∧

⊕(C2 = C − P ∗ 0.1) ∧ ⊕(P2 = P ∗ 1.2)

1

A

where

8

>

<

>

:

α0 = utt(dutch, w4, inform(A1, buyer, Au, auct, bid(It, P), T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer, offer(It, P2), T3))

(IV)

0

B

@

ctr(dutch, w5, Tn) ∧ α0 ∧ ¬(α1 ∧ T2 > T)∧
timeout(dutch , w4, w5, T3) ∧ T3 > T∧

oav(IT, reservation price, RP)∧
oav(IT, decrement rate, DR) ∧ RP < P − DR

1

C

A

„

⊕α2∧
⊕(P2 = P − DR)

«

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(IT, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(IT, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer, offer(IT, P2), T4))

(V)

0

@

ctr(dutch, w5, Tn) ∧ α0 ∧ ¬(α1 ∧ T2 > T)∧
timeout(dutch , w4, w5, T3) ∧ T3 > T ∧ oav(It, reservation price, RP)∧

oav(It, decrement rate, DR) ∧ RP ≥ P − DR

1

A
`

⊕α2

´

where

8

<

:

α0 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer, offer(It, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer, withdrawn(It), T3))

(VI)

Fig. 2. Rules for the Dutch Auction Protocol

to the price of the good in auction, the rule adds the obligation for the auctioneer to inform
all the buyers about the sale.III. Prevention – It prevents agents from issuing bids they
cannot afford (their credit is insufficient). It states thatif agentAg’s credit is less thanP
(the last offer the auctioneer called for itemIt, at statew3 of scenedutch), then agentAg
is prohibited to bid.IV. Punishment – It punishes agents when issuing a winning bid they
cannot pay for. More precisely, the rule punishes an agentA1 by decreasing his credit of
10% of the value of the good being auctioned. Theoav predicate on theLHSof the rule
represents the current credit of the offending agent. The rule also adds an obligation for
the auctioneer to restart the bidding round and the constraint that the new offer should be
greater than 120% of the old price.V. No bids/New Price– It checks if there were no bids
and the next price is greater than the reservation price. If so, it adds the obligation for the
auctioneer to start a new bidding round. Rule 5 checks that the current scene state isw5,
whether a timeout has expired after the last offer and whether the new price is greater than
reservation price. If so, the rule adds the obligation for the auctioneer to offer the item at a
lower price. By retrieving the last offer we gather the last offer price. By checking theoav
predicates we gather the values of the reservation price andthe decrement rate for itemIt.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

40 · Andrés Garcı́a-Camino et al.

VI. No bids/withdrawal – It checks if there were no bids and the next price is less thanthe
reservation price, then adds the obligation for the auctioneer to withdraw the item. Rule 6
checks that the current state isw5, whether a timeout has occurred after the last offer and
whether the new offer price is greater than reservation price. If theLHSholds, the rule fires
to add the obligation for the auctioneer to withdraw the item. By checking the last offer
we gather the last offer price. By checking theoav predicates we gather the values of the
reservation price and the decrement rate for the price of item It.

This example illustrate how our language addresses the pragmatic concerns raised in
section 2.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a formalism for the explicitmanagement of the normative
position of agents in electronic institutions. Ours is a rule language in which constraints
can be specified and changed at run-time, conferring expressiveness and precision on our
constructs. The semantics of our formalism defines a kind of production system in which
rules are exhaustively applied to a state of affairs, leading to the next state of affairs. The
normative positions are updated via rules, depending on themessages agents send. Our
formalism addresses the points of a desiderata for normative languages introduced in sec-
tion 2. We have explored our proposal in this paper by specifying a version of the Dutch
Auction protocol.

We would like to generalise our language to cope with arbitrary actions, rather than just
speech acts among agents – this would allow our work to address any type of open multi-
agent system. We would also like to improve the semantics of the language in order to
support the use of temporal operators for the management of time.

REFERENCES

ARTIKIS, A., KAMARA , L., PITT, J., AND SERGOT, M. 2005. A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. LNCS, vol. 3476. Springer-Verlag.

AXELROD, R. 1997. The complexity of cooperation: agent-based models of competition and collaboration.
Princeton studies in complexity. Princeton University, New Jersey.

DIGNUM , F. 1999. Autonomous Agents with Norms.Artificial Intelligence and Law 7,1, 69–79.
ESTEVA, M. 2003. Electronic Institutions: from Specification to Development. Ph.D. thesis, Univ. Politècnica

de Catalunya (UPC). IIIA monography Vol. 19.
FITTING , M. 1990.First-Order Logic and Automated Theorem Proving. Springer-Verlag, New York, U.S.A.
GARCÍA -CAMINO , A., NORIEGA, P., AND RODRÍGUEZ-AGUILAR , J. A. 2005a. Implementing Norms in

Electronic Institutions. InProcs. 4th AAMAS.
GARCÍA -CAMINO , A., RODRÍGUEZ-AGUILAR, J. A., SIERRA, C., AND VASCONCELOS, W. 2005b. A Dis-

tributed Architecture for Norm-Aware Agent Societies. AUCS/TR0503, Dept of Computing Sc., Univ. of
Aberdeen, Aberdeen, UK.

JENNINGS, N., SYCARA , K., AND WOOLDRIDGE, M. 1998. A roadmap of agent research and development.
Journal of Agents and Multi-Agents Systems 1, 7–38.

L ÓPEZ YL ÓPEZ, F. 2003. Social power and norms: Impact on agent behaviour.Ph.D. thesis, Univ. of Southamp-
ton.

NORIEGA, P. 1997. Agent-Mediated Auctions: The Fishmarket Metaphor. Ph.D. thesis, Universitat Autònoma
de Barcelona (UAB). IIIA monography Vol. 8.

SEARLE, J. 1969.Speech Acts, An Essay in the Philosophy of Language. Cambridge University Press.
SERGOT, M. 2001. A Computational Theory of Normative Positions.ACM Trans. Comput. Logic 2,4, 581–622.
SHOHAM , Y. AND TENNENHOLTZ, M. 1995. On Social Laws for Artificial Agent Societies: Off-line Design.

Artificial Intelligence 73,1-2, 231–252.
WOOLDRIDGE, M. 2002.An Introduction to Multiagent Systems. John Wiley & Sons, Chichester, UK.

ACM SIGecom Exchanges, Vol. 5, No. 5, 01 2006.

