
2

On-line Automated Synthesis of Compact Normative Systems

JAVIER MORALES, Artificial Intelligence Research Institute (IIIA-CSIC), Spain

MAITE LÓPEZ-SÁNCHEZ, University of Barcelona, Barcelona, Spain

JUAN A. RODRIGUEZ-AGUILAR, Artificial Intelligence Research Institute (IIIA-CSIC), Spain

WAMBERTO VASCONCELOS, University of Aberdeen, United Kingdom

MICHAEL WOOLDRIDGE, University of Oxford, United Kingdom

Most normative systems make use of explicit representations of norms (namely, obligations, prohibi-
tions, and permissions) and associated mechanisms to support the self-regulation of open societies of self-
interested and autonomous agents. A key problem in research on normative systems is that of how to syn-
thesise effective and efficient norms. Manually designing norms is time-consuming and error-prone. An
alternative is to automatically synthesise norms. However, norm synthesis is a computationally complex
problem. We present a novel on-line norm synthesis mechanism, designed to synthesise compact normative
systems. It yields normative systems composed of concise (simple) norms that effectively coordinate a multi-
agent system without lapsing into over-regulation. Our mechanism is based on a central authority that
monitors a multi-agent system, searching for undesired states. After detecting undesirable states, the cen-
tral authority then synthesises norms aimed to avoid them in the future. We demonstrate the effectiveness
of our approach through experimental results.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence —
Multiagent Systems

General Terms: Algorithms

Additional Key Words and Phrases: Normative systems, norm synthesis

ACM Reference Format:

Javier Morales, Maite López-Sánchez, Juan A. Rodriguez Aguilar, Wamberto Vasconcelos, Michael
Wooldridge. Automated Synthesis of Compact Normative Systems. ACM Trans. Autonom. Adapt. Syst. 10,
1, Article 2 (February 2015), 34 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

A norm is an established pattern of behaviour which members of a society are ex-
pected to comply with [Bicchieri 2006]. Typically, norms impose restrictions on the
behaviour of individuals. These behavioural restrictions play two important roles. On
the one hand, they are of benefit to individuals because they simplify decision-making
by ruling out various courses of action, thus reducing the decision space of alternatives

Author’s addresses: Javier Morales, Artificial Intelligence Research Institute, Spanish Council of Scientific
Research (IIIA-CSIC). Campus de la UAB, E-08193 Bellaterra, Catalonia (Spain); Maite López-Sánchez,
MAiA Department, University of Barcelona. Gran Via, 585 08007 Barcelona (Spain); Juan A. Rodrı́guez-
Aguilar, Artificial Intelligence Research Institute, Spanish Council of Scientific Research (IIIA-CSIC). Cam-
pus de la UAB, E-08193 Bellaterra, Catalonia (Spain); Wamberto Vasconcelos, Department of Computing
Science, University of Aberdeen. Meston Building Meston Walk, Aberdeen, AB24 3UE, (United Kingdom);
Michael Wooldridge, Department of Computer Science, University of Oxford. Wolfson Building, Parks Rd,
Oxford OX1 3QD (United Kingdom).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1556-4665/2015/02-ART2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:2 Morales et al.

that need to be considered. On the other hand, at the social level, they provide means
whereby agents in societies can coordinate their activities, using only local decision-
making [Binmore 2005].

Norms have been widely studied as a mechanism for coordinating multi-agent sys-
tems (MAS) [Shoham and Leyton-Brown 2009; Dignum 1999; Boella et al. 2006]. Co-
ordination in this sense is usually understood as achieving some system-level goal,
such as ensuring that the system avoids certain undesirable states. However, the prob-
lem of actually synthesising norms that effectively coordinate a multi-agent system
is challenging. Since the seminal work of [Shoham and Tennenholtz 1995], the norm
synthesis problem (namely, creating a set of norms which ensures that coordination is
successful) has attracted considerable attention. Two approaches for norm synthesis
have been considered in the literature: off-line and on-line.

Off-line approaches (e.g., [Shoham and Tennenholtz 1995;
Fitoussi and Tennenholtz 1998]) are aimed at synthesising normative systems at
design time. Unfortunately, the complexity of the off-line norm synthesis problem
is high (NP-hard) [Shoham and Tennenholtz 1995]. These complexity issues have
prompted research into the problem of managing the size of the system state
space [Christelis and Rovatsos 2009]. Unfortunately, even if we ignore the problem
of computational complexity, computing norms off-line is not appropriate if the state
space of the system is not known in advance, or if it may change over time.

In contrast to off-line approaches, on-line approaches are aimed at synthesising
norms at run-time rather than design time. The key conceptual advantage of on-line
approaches compared to off-line approaches is that on-line approaches are not assumed
to require complete knowledge of the system at design time.

Recently, norm emergence (or convention emergence) has become a popular tech-
nique for on-line norm synthesis (see, e.g., [Sen and Airiau 2007; Sen and Sen 2010;
Griffiths and Luck 2010; Salazar et al. 2010; Villatoro et al. 2011; Yu et al. 2013]).
Norm emergence does not require any global state representation or centralised con-
trol, and considers that agents collaboratively choose their own norms. Norm emer-
gence therefore implies that agents are endowed with the computational capability to
synthesise norms, and that they will choose to cooperate in the norm synthesis pro-
cess. A norm is considered to have emerged when a significant number of agents in
an agent society adhere to a common behaviour (that is, they choose the same ac-
tions), which is not dictated by a central authority. Therefore, a key issue in norm
emergence is the design of emergence mechanisms that help agents agree on-line (con-
verge) on some norm(s) [Kittock 1993; Walker and Wooldridge 1995]. Typically, state-
of-the-art norm emergence mechanisms: (i) require an initial set of pre-designed, al-
ternative norms; (ii) are sensitive to such initial conditions; and (iii) mainly converge
to a unique norm instead of to a set of norms (with the exception of [Sen and Sen 2010;
Salazar et al. 2010]).

A recent, alternative on-line approach is described in [Morales et al. 2011c]. There,
norms are synthesised by observing agent interactions, without requiring their active
participation in the synthesis process, unlike state-of-the-art norm emergence mech-
anisms. The approach in [Morales et al. 2011c] proved to be capable of synthesising a
set of norms (i.e., a normative system), instead of a single norm, from scratch (namely,
without requiring any initial, alternative norms). Moreover, it proved that the norms
it synthesises are both effective and necessary to achieve MASs coordination. On the
one hand, the effectiveness of a norm determines to what extent it is capable to avoid
undesired MAS states. On the other hand, the necessity of a norm can be employed to
determine whether it is really necessary to avoid undesired states, or those undesired
states could be avoided without the existence of the norm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:3

Typically, norms are synthesised with the aim of developing a stable set of norms
that will prevent undesired states of the MAS (i.e., conflicts). However, assuming that
agents are autonomous and they can choose whether to comply or not with norms, we
cannot guarantee the prevention of undesired states. Therefore, here we assume that
a set of norms is stable if: (i) norms avoid undesired states as long as agents comply
with them, and (ii) the set of norms remains unchanged for an extended period of time.
Norm stability is essential in order to provide agents with a common framework for
their interactions. However, in addition to simply avoiding undesired states effectively,
we might also want to consider compactness as a criteria for the on-line synthesis of
norms. Compactness requires that the norms synthesised are as small as possible.

The work in [Morales et al. 2011c] (hereafter referred as BASE) considers compact-
ness when synthesising norms. However, as we will show in this paper, it suffers
from two major limitations. First, compactness is significantly jeopardised by the way
synthesised norms are evaluated and generalised. On the one hand, the evaluation
process is ill-defined because it unnecessarily aggregates the effectiveness and ne-
cessity of norms. On the other hand, general norms are synthesised with very lit-
tle evidence, leading to the possibility of over-generalisation. Second, the approach
of [Morales et al. 2011c] lacks stability: a set of norms is stable if they avoid undesired
system states and remain unchanged for an extended period of time.

Notice that norm stability is essential in order to provide agents with a common
framework for their interactions. As we will show below, the synthesis mechanism in
[Morales et al. 2011c] is rather unstable, only being able to synthesise a normative
system that avoids undesired states when the number of norm infringements in the
system is very low. This means that this mechanism very frequently changes the rules
of the game (the norms) to the agents in an agent society.

Against this background, the main contribution in this paper is a new, domain-
independent norm synthesis mechanism called IRON (Intelligent Robust On-line
Norm synthesis machine) to synthesise norms that characterise necessary condi-
tions for coordination, while avoiding over-regulation. Likewise BASE, IRON (avail-
able in the on-line appendix) assumes that (1) norms do not incorporate sanctions,
and hence they can be regarded as soft-constraints imposed to the agents; and (2)
agents employ a stochastic norm infringement model, although rational norm infringe-
ments would guide towards useful normative systems in a more informed way. In
this realm, we show that IRON significantly outperforms the approach described in
[Morales et al. 2011c] in terms of:

— Stability. Unlike the approach in [Morales et al. 2011c], IRON is highly stable, capa-
ble of synthesising enduring normative systems that avoid undesired states despite
a high number of infringements in the agent society. We explore the limits of IRON

to empirically show that its synthesis mechanism manages to synthesise norms even
when the probability of agents violating norms is high, namely when half of the de-
cisions of each agent may result in norm infringements.

— Compactness. IRON manages to converge to normative systems that are between 30%
and 70% more compact (have fewer norms) than those synthesised by the approach
of [Morales et al. 2011c].

These advantages stem from the core components of IRON’s abstract architecture,
namely: (i) an evaluation method that evaluates norms in terms of different synthe-
sis criteria, which allows IRON to be stable; (ii) a generalisation operator that allows
IRON to synthesise compact normative systems, only generalising norms when there
is enough evidence; and (iii) a specialisation operator that makes it possible to undo
under-performing generalisations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:4 Morales et al.

Notice that although IRON was originally introduced in [Morales et al. 2013], we pro-
vide several extensions in this paper. First, here we provide a comprehensive descrip-
tion of IRON’s norm generalisation mechanism, which is a core process within its syn-
thesis process. Second, we introduce metrics for compactness of normative systems,
and provide a thorough empirical evaluation of IRON’s compactness. Third, we provide
a detailed comparison of IRON versus the approach in [Morales et al. 2013] in terms of
stability and compactness.

The proposed approach can be then applied to a wide range of domains that can be
regulated by means of norms. As an example, in a traffic scenario IRON can be em-
ployed to synthesise traffic rules that prevent cars from colliding. Another example is
the case of on-line communities, where individuals interact by uploading and sharing
opinions about different contents. There, users can also complain about those contents
they find to be inappropriate. In [Morales et al. 2014], IRON has been proven to be
capable of synthesising norms that prevent the users of an on-line community from
uploading inappropriate contents.

The remainder of this paper is organised as follows. Section 2 introduces the basic
framework within which we work, and defines the norm synthesis problem that we
tackle in this paper. Section 3 summarises the approach of [Morales et al. 2011c] in
order to facilitate comparison with IRON, which is described in Section 4. Section 5
presents our empirical evaluation of IRON. Finally, Section 6 draws some conclusions
and discusses on the applicability and limitations of our approach. Finally, Section 7
describes some possible avenues for future research.

2. BASIC DEFINITIONS AND PROBLEM STATEMENT

In this section we provide some basic definitions and use these to formally state the
problem of norm synthesis.

2.1. Basic definitions

We consider a system composed of a finite set of agents Ag = {ag1, . . . , agn} with a
shared finite set of actions Ac = {ac1, . . . , acm} that these agents can perform. Let
S be the set of all possible states of the system, and let C ⊆ S be a set of undesired
(conflicting) states. We do not require any specific semantics for the notions of state and
undesired state: the interpretation will depend on the particular domain of interest.
As an example, consider a traffic scenario in which agents correspond to computer-
controlled cars. In this case, the set of undesired states would correspond to those
states containing, e.g., collisions.

We will use a language L to describe the states of a MAS. This language, to be
more formally defined later, is a logical language containing the standard classical
connectives, and a notion of consequence defined for it via a relation |=. Given a state
s ∈ S, we let ν(s) denote an expression in L that describes the state. For instance, if L
is a predicate logic language with grounded terms and s stands for a state of a traffic
junction, ν(s) would be composed of the predicates describing the position of each car
in it.

We assume that each agent has its own local view of the state of the system that it
is part of. For instance, a car located at a road junction will have its own local percep-
tion of the system, which corresponds to the perception of cars in its vicinity (i.e., the
junction) without including those other cars further away in the road. Thus, an agent
context is an agent’s internal representation of a system state (i.e., its beliefs). Agents
express their contexts in terms of an agent language LAg , which we will detail at a
later point. However, we often find it convenient to assume that the language is that
of a predicate logic with grounded terms. We denote the consequence relation for this

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:5

logic as |=. Henceforth, given a state s ∈ S and an agent ag ∈ Ag that is part of s, we
will refer to its context by means of function c : Ag × S → LAg.

We now introduce our notion of norm, which establishes obligations, permissions
and/or prohibitions [Meyer and Wieringa 1993] to an individual agent whenever some
pre-conditions are fulfilled. Since in this work we focus on synthesising norms that can
be easily interpreted and fulfilled by agents, we employ the agent language to express
norms. Therefore, norm pre-conditions are expressed as formulae of LAg , and hence in
terms of an agent’s point of view.

DEFINITION 1 (NORM). A norm is a pair 〈ϕ, θ(ac)〉 where ϕ ∈ LAg stands for the
precondition of the norm, ac ∈ Ac is an action, and θ ∈ {obl , perm, prh} is a deontic
operator: obl indicates an obligation, perm indicates a permission, and prh indicates a
prohibition.

An agent ag ∈ Ag evaluates whether a norm n = 〈ϕ, θ(ac)〉 applies in a state s as
follows. First, we say that the context of ag in s, c(ag , s), satisfies the pre-condition of
norm n if, and only if, c(ag, s) |= ϕ. In this case, norm n applies to agent ag and the
deontic expression θ(ac) will hold for it. More concretely, we assume the precondition
ϕ is a set of first-order predicates p(τ1, . . . , τn), with p being a predicate symbol and
τ1, . . . , τn being terms of LAg (the set of predicates represents their conjunction); θ(ac)
is an atomic deontic formula. We represent a normative system Ω as a set of norms.

Notice that a normative system in our model essentially consists of a set of soft
constraints on the behaviour of agents. It could be argued that this approach is more
specific than is strictly necessary: an alternative approach would be for a norm de-
signer simply to specify the undesirable system states (conflicts) that agents should
avoid. The advantage of such an alternative approach is that it provides agents with
more flexibility than IRON: it leaves an agent free to choose how to respect the norm.
There are at least two difficulties with such an alternative approach, however. First, it
presents agents with the problem of determining for themselves how to act in such a
way as to respect the norm; that is, each agent should then solve a potentially complex
norm compliance problem. Secondly, such an approach may cause problems if there
are multiple possible norms that satisfy the designers intent, each involving multiple
agents. In this case, communication and cooperation may be required in order to en-
sure that agents correctly coordinate on the selection of just one of the available set
of norms. At the very least this will impose an additional communication overhead on
agents, and at worst, it may be impossible in time-constrained settings.

We now introduce a running example to be used throughout the remainder of the pa-
per. We consider a traffic junction scenario composed of two orthogonal roads. Agents
are autonomous cars that enter the scenario and cross the junction to reach their des-
tinations. A car perceives the scenario by means of its local context, which is expressed
by means of three unary predicate symbols {left , front , right} of LAg, which are used
to represent what occupies the three road positions the car perceives. Each predicate
has a single term from {car , bike, private, ambulance, police, fire-brigade , emergency , nil}
of LAg, representing different vehicle types, and the symbol “nil ” standing for no vehi-
cle. The actions available to agents are Ac = {Go,Stop}. In particular, the action Go
means that the car moves forward in its target direction (in particular it may include
turns), and Stop means that the agent remains stopped in its position.

Using this traffic scenario, we can represent a norm that establishes a prohibition
to go for an agent that observes a car to its left (hence giving way to it) as:

n0 : 〈{left(car), front(nil), right(nil)},prh(Go)〉

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:6 Morales et al.

Where the precondition has a predicate left(car) that is true if there is a car to the left
of the agent evaluating the norm (the reference car), front(nil) and right(nil) are predi-
cates that are true when, respectively, the front and right positions of the reference car
are empty. So, if agent ag ’s context is {left(car), front(nil), right(nil)}, then, c(ag) |= ϕ
holds and prh(Go) applies to the car.

Norm n1 below prohibits a car from going (hence giving way) if there is an ambulance
to its left, a car to its front and nothing to its right; it works in conjunction with two
additional norms n2 and n3 to regulate priority of emergency vehicles:

n1 : 〈{left(ambulance), front(car), right(nil)}, prh(Go)〉

n2 : 〈{left(police), front(car), right(nil)}, prh(Go)〉

n3 : 〈{left(fire-brigade), front(car), right(nil)}, prh(Go)〉

Let us suppose that {n1, n2, n3} comprise a normative system Ω. We observe that we
can generalise these norms into a single norm that regulates when to give way to
emergency vehicles coming from the left:

n5 : 〈{left(emergency), front(car), right(nil)}, prh(Go)〉

As we explain below, this generalisation is possible because n5 caters for the same situ-
ations (pre-conditions) of {n1, n2, n3}, and establishes the same norm. Notice thus that
whenever norms n1, n2 or n3 are applicable, their parent norm n5 will be applicable
as well. Let us now consider a norm similar to n3, which prohibits a car from going
if there is a fire-brigade vehicle to its left, nothing to its right, and there is a bike in
front:

n4 : 〈{left(fire-brigade), front(bike), right(nil)}, prh(Go)〉

Similarly to the generalisation of n1, n2, and n3 into n5, we may generalise n3 and
n4 as a single norm establishing that agents should not go (and thus yield to a fire-
brigade) when there is a private vehicle in front (either a car or a bike):

n6 : 〈{left(fire-brigade), front(private), right(nil)}, prh(Go))〉

Next, we define how to establish such relationship between norms. We use a sub-
sumption relationship (⊑) between the terms in LAg . Thus, if τ, τ ′ ∈ LAg and τ ′ ⊑ τ ,
we say that τ is more general than τ ′. In our example, police ⊑ emergency, as a police
car “is a” specific kind of emergency vehicle.

DEFINITION 2 (NORM GENERALISATION). We say that norm n = 〈ϕ, θ(ac)〉 is more
general than norm n′ = 〈ϕ′, θ(ac)〉, denoted as n′ ⊆ n, iff |ϕ| = |ϕ′|, and for each predi-
cate p(τ ′0, . . . , τ

′
n) ∈ ϕ′, there is a predicate p(τ0, . . . , τn) ∈ ϕ such that τ ′i ⊑ τi, 0 ≤ i ≤ n.

In general, if nj is generalised by ni, then we also say that ni is specialised by nj. If
there exists at least some nk ∈ N such that nj ⊆ nk ⊆ ni we say that ni is an ancestor
of nj , otherwise ni is a father of nj . If nj is not generalised by ni, we denote it by nj * ni.

2.2. Research problem

We evaluate norms and normative systems in terms of their effectiveness and necessity
in achieving coordination. On the one hand, our system IRON measures the cumulative
effectiveness of a norm from the outcomes of its fulfilments: the higher the ratio of suc-
cessful fulfilments (fulfilments that did not lead to an undesired MAS state), the more

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:7

effective the norm. On the other hand, it measures the necessity of a norm according
to the following principle: the higher the ratio of harmful infringements (infringements
leading to undesired states), the more necessary the norm.

In this paper, we focus on a particular type of MAS, namely normative multi-agent
system (NMAS). A NMAS is one whose agents have their actions regulated by some
normative system (set of norms) they are aware of. Moreover, the system itself can
assess whether and to whom norms in the normative system apply. For the sake of
clarity, although NMAS is a concept used in the literature [Singh et al. 2013], the spe-
cific notion of NMAS we use is as follows:

DEFINITION 3 (NORMATIVE MAS). A Normative Multi-agent System (NMAS) is a
tuple 〈Ag,Ac,Ω,LAg , S0, S〉, where: (i) Ag is a set of agents; (ii) Ac is a set of actions; (iii)
Ω is a normative system, whose norms are expressed in the agent language LAg ; (iv) S0

is the initial MAS state and; (v) S is a set of states.

Given a NMAS, our aim is to generate a normative system that avoids undesired
states as long as agents comply with them, while avoiding over-regulation. With this
aim, given a normative system we must be able to measure: (i) the effectiveness of its
norms in preventing undesired states when agents comply with them; and (ii) whether
its norms are necessary to prevent undesired states (that is, if agents infringing norms
lead to undesired states or not). Furthermore, since the state of a NMAS changes as
agents interact, our goal is to find a stable normative system, namely a set of norms
that remains unchanged and whose norms are sufficiently effective and necessary for
a given period of time. With this aim, we make use of functions µeff and µnec, which
are detailed in Section 4.3, that measure the effectiveness and necessity of a norm,
respectively. We use these functions in tandem with: (i) a time period T in which the
norms of the normative system are required to be sufficiently effective and necessary
to consider the normative system as stable; and (ii) threshold values αspec

eff and αspec
nec ,

where αspec
eff , αspec

nec ∈ [0, 1]. These thresholds set satisfaction degrees for effectiveness

and necessity. Thus, any norm which effectiveness or necessity is under respective
thresholds, will be removed from the normative system. Finally, we define the problem
that we address in this paper:

DEFINITION 4 (NORM SYNTHESIS PROBLEM). Let 〈Ag ,Ac,Ω,LAg , S〉, be a NMAS,
C ⊆ S a set of undesired states, µeff , µnec functions to assess the effectiveness and neces-
sity of a norm, αeff , αnec satisfaction degrees, ψ a function that returns the normative
system at each given time t, t0 the initial time step, and T = [tbegin, . . . , tend] a time in-

terval. The norm synthesis problem (NSP) is that of finding a normative system Ω̄ such
that for some tbegin ≥ t0, and for all t in T , the following conditions hold: (1) for each

n ∈ ψ(t), µeff (n, t, C) > α
spec
eff and µnec(n, t, C) > αspec

nec ; and (2) ψ(t) = Ω̄.

Notice that solving this problem amounts to finding a stable normative system for
a given period of time. Of course, it may be that several normative systems might
be sufficiently effective and necessary during a period of time. To further distinguish
between them, we use a measure of compactness: we prefer smaller normative systems
over larger ones.

DEFINITION 5 (COMPACTNESS). The compactness of a normative system Ω is the
total number of predicates in its norms, namely

∑
n∈Ω

|n|, where |n| stands for the num-
ber of predicates in a norm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:8 Morales et al.

3. BACKGROUND

In this section we survey BASE, the norm synthesis approach described in
[Morales et al. 2011c], as our work builds on this framework. BASE is an iterative ap-
proach that continuously monitors a system, searching for undesired states. Whenever
an undesired state is detected, a norm generation process is initiated, which results in
the generation of a new norm aimed at avoiding that undesired state in the future.
This generation process is based on an unsupervised approach of Case-Based Reason-
ing (CBR). Classical CBR [Riesbeck and Schank 1989; Aamodt and Plaza 1994] is a
supervised machine learning technique that solves new problems (i.e., cases) by obtain-
ing similar ones from a knowledge base (i.e., a case base) and adapting their solutions
under the supervision of an expert. The unsupervised CBR in [Morales et al. 2011c]
starts with an initially empty case base, and does not require an expert to evalu-
ate generated solutions. Instead, cases (and their solutions) are elicited at runtime,
and evaluated in an unsupervised manner. Whenever BASE detects an undesired MAS
state, it generates (and adds to the case base) a new case that describes the undesired
state (at time t), and the previous state (at time t− 1) that led to that undesired state
1. Then, it generates a new solution that is aimed to avoid the transition to that unde-
sired state in the future. To generate solutions, it randomly chooses one of the agents
involved in the transition (for instance, in a traffic scenario, one of the agents that
have collided). Then, it prohibits the action that the agent performed in the transition
from the previous to the undesired state (that is, from time t − 1 to t). The generated
solution is finally translated into a norm that agents can interpret and comply with.
Generated norms (and their corresponding solutions) are evaluated in runtime based
on their outcomes in the MAS.

Next, a norm evaluation process is carried out, which computes the performance of
of those norms that have been fulfilled, as well as those that have been infringed, dur-
ing the current step. Finally, a norm refinement process is carried out, which discards
norms that under-perform during a given period of time Tw.

Finally, as a result of norm generation, evaluation and refinement, BASE outputs a
normative system Ω. This normative system, which contains the currently prevailing
norms, is then broadcast to the agents so that they become aware of it.

In order to provide the proper background to our approach, we present Algorithm
1 from [Morales et al. 2011c]. It describes the BASE strategy for synthesising norma-
tive systems. In the norm generation phase, for each detected undesired MAS state
(i.e., conflict), the function generateNorm (line 2) creates a new norm aimed at avoiding
that particular state, and adds the new norm to the normative system (Ω). Next, the
norm evaluation process evaluates applicable norms, that is, those norms that have
been fulfilled (F) and infringed (I) during the current step t (lines 4–5), in terms of
their effectiveness and necessity to achieve MASs coordination. On the one hand, it
measures the cumulative effectiveness of a norm from the outcomes of its fulfilments.
Specifically, whenever agents fulfil a norm and it leads to a non-undesired state (i.e.,
a non-conflicting state), then the norm is considered as effective to avoid undesired
states. By contrast, if agents comply with the norm and it leads to an undesired state,
then the norm is considered as ineffective. Thus, the higher the ratio of successful ful-
filments (fulfilments that did not lead to undesired MAS states), the more effective the
norm. On the other hand, it measures the necessity of a norm based on the outcomes of
its infringements. Whenever agents infringe a norm and it leads to an undesired state,
then the norm is considered as necessary. If agents infringe the norm and it does not
lead to an undesired state, then it is considered as unnecessary. Thus, the higher the

1This implies that BASE must continuously monitor the MAS by means of a window of two time steps (that
is, the current MAS state at time t and the previous MAS state at time t− 1).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:9

ALGORITHM 1: BASE norm synthesis strategy

Input: Ω, Tw, αdeact

Output: Ω
/* Norm generation */

[1] for conflict ∈ detectedConflicts do
[2] n← generateNorm(conflict);
[3] Ω← Ω ∪ {n};

end
/* Norm evaluation */

[4] F ← fulfilledNorms(Ω);
[5] I ← infringedNorms(Ω);
[6] for n ∈ (F, I) do
[7] U(n, Tw)← evaluate(n, F, I, Tw);

end
/* Norm refinement */

[8] for n ∈ (F, I) do
[9] if U(n, Tw) < αdeact then
[10] Ω← deactivate(Ω, n)

end

end
[11] return Ω

ratio of harmful infringements (infringements leading to undesired MAS states), the
more necessary the norm. The function evaluate (line 7) evaluates applicable norms by
combining their effectiveness and necessity into a single utility measure u. Finally, the
overall utility U of a norm is computed as the degree of positive evaluations (i.e., u > 0)
over its total evaluations during a period of time Tw:

U(n, Tw) =
ū+(n, Tw)

ū(n, Tw)
(1)

where ū+(n, Tw) stands for the average of the positive evaluations of n during the
period of time Tw and ū(n, Tw) stands for the average of all evaluations of n during
period Tw. Finally, BASE carries out a norm refinement process, which deactivates those
norms that under-performed during period T . Whenever the utility U(n, Tw) of a norm
is under a certain threshold αdeact, it is deactivated (line 10).

This approach can be seen to suffer from the following drawbacks:

— Generalisation on the basis of scarce evidence – Let us consider a traffic scenario and
the following situation: a car perceives another car to its left, nothing in front and
nothing to its right. Let us suppose that we want to force a car to stop whenever it
perceives this situation. An appropriate norm to generate would be: “stop when there
is a car to your left, nothing in front and nothing to your right”. However, we observe
that this norm synthesis instead generates a general norm such as “stop when there
is a car to your left,” disregarding the front and right positions. This norm should only
be generated when there is evidence of all the situations it may represent. However,
BASE generates this general norm on the basis of a single piece of evidence.

— Ill-defined evaluation – The norm evaluation process evaluates norms by aggregating
their effectiveness and necessity into one unique value that represents their overall
utility. This causes a coupling effect between effectiveness and necessity, and makes
it impossible to evaluate whether norms are necessary independently of their effec-
tiveness. For instance, a norm that is highly unnecessary but also highly effective

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:10 Morales et al.

may be evaluated as performing well, since its resulting utility balances the differ-
ences between its effectiveness and necessity.

— Lack of specialisation – This problem arises when norms that do not perform well
are simply removed from the normative system, without taking into account the fact
that under-performing general norms may be refined to eliminate just those cases
that decrease their utility.

Despite the above-mentioned drawbacks, one of the advantages of BASE is its low
complexity, as shown by the following lemma.

LEMMA 3.1. The complexity of the norm synthesis performed by the BASE algorithm
employing a case base C containing ηC norms when detecting κ conflicts is O(κ · ηC +4 ·
|Ag| · |Ω|).

PROOF. On the one hand, the cost of generating norms for all detected conflicts is
O(κ · ηC), since it may require to search through the whole case-based reasoning base
per conflict. Next, the cost of building the sets F and I of fulfilled and infringed norms
is O(2 · |Ag| · |Ω|). This is because each norm in the normative system may be either
fulfilled or infringed by each agent in the system. Since the total size of the sets F
and I together is |Ag| · |Ω|, the cost of evaluating norms is O(|Ag| · |Ω|). Therefore,
altogether the norm evaluation process is O(3 · |Ag| · |Ω|). Finally, the cost of the norm
refinement process is O(|Ag| · |Ω|) since, again, it requires a search over a list whose
maximum size is |Ag| · |Ω|. Putting all together, the resulting worst-case complexity is
O(κ · ηC + 4 · |Ag| · |Ω|).

4. IRON: A NORM SYNTHESIS MECHANISM

In this section we introduce the Intelligent Robust On-line Norm synthesis mechanism
(IRON), a norm synthesis approach aimed at solving the norm synthesis problem for-
malised by Definition 4. IRON is intended to synthesise effective compact normative
systems (that is, normative systems that avoid undesired MAS states).

While the basic operation of IRON follows the on-line approach of the BASE algorithm
described in Section 3, IRON was designed to overcome the drawbacks of BASE. Specif-
ically, given a NMAS, IRON operates by continuously iterating the following steps: (1)
it monitors the operation of the system; (2) it decides upon the addition of brand new
norms to the current normative system; (3) it evaluates whether the effectiveness and
necessity of the normative system are within expected thresholds; (4) if required, it
refines the normative system; and (5) it makes the normative system available to the
agents. Notice therefore that IRON continuously searches for a normative system on-
line, while agents in the system are operating.

IRON is based on five components, namely, (i) a grammar for the synthesis of new
norms; (ii) the normative network (a data structure to represent normative systems
and explored norms); (iii) a method for the evaluation of norms and normative systems;
(iv) a set of operators that make it possible to transform one normative system into
another; and (v) a strategy that specifies when to use such operators. We describe
below each component in detail, and explain IRON’s architecture and computational
model.

4.1. Grammar for norm synthesis

Our approach employs a grammar G to synthesise candidate norms of the form
〈ϕ, θ(ac)〉 (cf. Def 1). We have adapted our grammar from [Garcı́a-Camino et al. 2009],
using as building blocks atomic formulae of the form pn(τ1, . . . , τn), p being an n-ary
predicate symbol and τ1, . . . , τn terms of LAg .

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:11

Fig. 1. Evolution of a normative network (and its normative system) along time: Ωi = {n1}, Ωi+1 =
{n1, n2}, Ωi+2 = {n1}

Norm ::= 〈{LHS}, RHS〉
LHS ::= LHS, LHS | ρ
RHS ::= θ(Ac)
θ ::= obl | perm | prh
Ac ::= ac1 | ac2 | . . . | acn
ρ ::= pn(τ1, . . . , τn)
τ ::= c1| . . . |cn|x1| . . . |xm

where ai and xj are constants and variables, respectively. We represent as N the set of
all norms which comply with the grammar above.

If we consider further our traffic scenario, the grammar used to synthesise the norm
examples given in Section 2 is as follows:

Ac ::= Go | Stop
ρ ::= left(τ) | front(τ) | right(τ)
τ ::= car | bike | private | ambulance | police | fire-brigade | emergency | nil

Terms τ in this grammar have the following subsumption relationships: car ⊑ private,
bike ⊑ private, ambulance ⊑ emergency, police ⊑ emergency, fire-brigade ⊑ emergency.

4.2. A representation of normative systems

Since IRON will continuously synthesise norms in search for a normative system, it
must be able to differentiate between the norms that are currently part of the norma-
tive system and those that are not (i.e., they have been explored but they are not
currently active). For this purpose, IRON employs a graph-based data structure to
represent normative systems, which we call a normative network. A normative net-
work is a graph whose nodes stand for norms and whose edges stand for relationships
(more specifically, in our work we concentrate on generalisation relationships) between
norms. Norms in a network may be either active or inactive. We assume that a norma-
tive network represents a normative system as its active norms.

Figure 1 illustrates the evolution of a normative network (and its corresponding
normative system) over time points ti, ti+1, ti+2. At time ti the normative network NN i

has a single active norm n1 (represented as a white circle) and Ωi = {n1}. At time ti+1 a
new norm, n2, is added to NN i, yielding NN i+1 and Ωi+1 = {n1, n2}. Finally, at time ti+2

norm n2 is deactivated (represented as a gray circle) giving rise to NN i+2 = {n1, n2}
and Ωi+2 = {n1}. Figure 1 also illustrates the way IRON performs the norm synthesis
process. In general, the process will consist of continuously iterating over (applying
changes to) the normative network according until it finds a normative system that
solves the norm synthesis problem (NSP).

We now offer a formal definition of the normative network employed by IRON:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:12 Morales et al.

DEFINITION 6 (NORMATIVE NETWORK). A Normative Network (NN) is a tuple
〈N , RG,∆, δ〉 where: (i) N ⊆ N is a subset of our language of norms; (ii) RG ⊆ N × N
is a generalisation relationship between norms; (iii) ∆ = {active, inactive} is the set of
possible states of a norm; (iv) δ : N → ∆ is a function that returns the state of a norm
n ∈ N .

Since IRON considers that the current normative system is composed of the norms
that are currently active in the normative network, we define Ω = {n |n ∈ N , δ(n) =
active}.

4.3. Evaluating norms and normative systems

We detail how we evaluate norms and normative systems in terms of their effective-
ness and necessity to achieve MASs coordination. IRON evaluates these two measures
individually, along the lines of BASE (described in Section 3). On the one hand, it mea-
sures the cumulative effectiveness of a norm from the outcomes of its fulfilments. The
higher the ratio of successful fulfilments (fulfilments that did not lead to undesired
states), the more effective the norm. On the other hand, it measures the necessity of a
norm according from the outcomes of its infringements. The higher the ratio of harm-
ful infringements (infringements leading to undesired states), the more necessary the
norm is. We illustrate norm evaluation with the following example. In a traffic sce-
nario, consider a norm like “give way to right”. This is an effective norm, since agents
will not collide with the car to their right as long as they comply with this norm. Thus,
whenever agents fulfil this norm it will lead to states that are not undesired (i.e., states
without car collisions), and that is why we call them successful fulfilments. Further-
more, this norm is also necessary to prevent cars from colliding with the cars to their
right. Therefore, whenever agents infringe the norm it will lead to undesired states
(i.e., states where cars have collided). This is what we call a harmful infringement.

We compute the effectiveness µeff (n, t, C) of norm n up to time t as:

µeff (n, t, C) = (1− α)× µeff (n, t− 1, C) + α× reff (n, t, C) (2)

where µeff (n, t − 1, C) is the effectiveness of n up to time t − 1 and 0 ≤ α ≤ 1 is a
learning rate; and reff (n, t, C) is a reward value based on the successful fulfilments
of norm n at time t. In particular, at an initial time t0, the effectiveness of a norm,
namely µeff (n, t0, C) is set with an initial constant value k ∈ [0, 1]. The reward of a
fulfilled norm at time t is computed as:

reff (n, t, C) =
wSF ×mSF (n, t, C)

wSF ×mSF (n, t, C) + wHF ×mHF (n, t, C)
(3)

where mSF (n, t, C) is the number of successful fulfilments of norm n at time t, namely
the number of fulfilments of the norm that did not lead to undesired MAS states,
mHF (n, t, C) is the number of harmful fulfilments of norm n at time t, namely the
number of fulfilments that led to undesired states, and wSF > 0, wHF > 0 weigh the
importance of successful and harmful fulfilments of n respectively. Notice that func-
tions mHF and mSF receive as a parameter the set of undesired states C so to assess if
a norm fulfilment has lead to an undesired state or not. As an example, we may decide
that a harmful fulfilment (that is, a norm fulfilment that leads to an undesired state),
must be punished with a (negative) reward much higher than the (positive) reward
that may obtain a successful fulfilment.

We notice therefore that our approach is akin to reinforcement learning
[Sutton and Barto 1998] since both the effectiveness and necessity of a norm
(µeff , µnec) are somehow learned by continuously aggregating rewards that have been
computed from the outcomes of agents’ norm compliance in the MAS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:13

Analogously, we compute the necessity of norm n up to time t as:

µnec(n, t, C) = (1− β)× µnec(n, t− 1, C) + β × rnec(n, t, C) (4)

where µnec(n, t − 1, C) is the necessity of n up to time t − 1; 0 ≤ β ≤ 1 is a learning
rate; and rnec(n, t, C) is a reward value based on the harmful infringements of norm n
at time t. As well as with the effectiveness, the necessity of a norm at an initial time t0
(µnec(n, t0, C)) is set to an initial constant value k ∈ [0, 1]. The reward of an infringed
norm is computed as:

rnec(n, t, C) =
wHI ×mHI(n, t, C)

wHI ×mHI(n, t, C) + wSI ×mSI(n, t, C)
(5)

wheremHI(n, t, C) is the number of harmful infringements of norm n, namely infringe-
ments that led to undesired states, mSI(n, t, C) is the number of successful infringe-
ments of norm n, namely those infringements that did not lead to undesired states,
and wHI > 0, wSI > 0 weigh the importance of harmful and successful infringements
of n respectively. Moreover, IRON computes the effectiveness and necessity ranges of
each norm during a time period Tw (i.e., a time window to compute the performance
ranges of each norm. These ranges will be essential (as we show below) to perform
generalisations and specialisations. We assess the effectiveness (Ě) and necessity (Ň)
ranges for each norm as follows:

Ě = [µ̄eff (n, Tw, C)− µ̂eff (n, Tw, C), µ̄eff (n, Tw, C) + µ̂eff (n, Tw, C)] (6)

Ň = [µ̄nec(n, Tw, C)− µ̂nec(n, Tw, C), µ̄nec(n, Tw, C) + µ̂nec(n, Tw, C)] (7)

where µ̄eff (n, Tw) and µ̂eff (n, Tw) stand for the average and deviation of the effective-
ness of n within Tw, respectively, and µ̄nec(n, Tw) and µ̂nec(n, Tw) stand for the average
and deviation of the necessity of n within Tw, respectively.

4.4. Operators for normative networks

IRON will search for a normative system that solves the NSP by transforming an initial
normative network over time, hence moving from one normative system to another.
With this aim, our norm synthesis mechanism implements a collection of normative
network operators. Each operator transforms IRON’s normative network 〈N ,RG,∆, δ〉
into another one 〈N ′,R′

G,∆, δ
′〉. More specifically, IRON implements the following op-

erators:

— The addition of a new norm into the normative system. As Table I formally specifies,
whenever a new norm is synthesised, the add operator extends IRON’s normative
network with norm n (N ′ = N ∪ {n}), and sets its state to active (δ′(n) = active).

— The deactivation of a norm in the normative system. The implementation of this
deactivate operator sets the state of a given norm to inactive. Hence, although the
norm remains in the normative network, it is no longer part of the normative system.

— The generalisation of a set of norms in the normative system into a more general
norm (e.g., considering the example in Section 2, generalising n1, n2, and n3 into
n5). As Table I shows, this generalise operator generalises a set of norms (children)
into a more general norm (parent) by: (i) adding the parent norm to the network;
(ii) establishing new generalisation relations (RG) between each generalised (child)
norm and the parent norm in the normative network; (iii) setting the state of the
parent to active and the children’s to inactive. As a result, the child norms will no
longer belong to the normative system, while the parent norm will.

— The specialisation of a norm in the normative system into more specific norms. This
operation reverses the result of a generalisation (e.g., n5 can be specialised into n1, n2,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:14 Morales et al.

and n3). Specifically, this specialise operator undoes the result of a generalisation
by setting to inactive the state of the parent (more general) norm and setting to active
the state of its children. Thus, thereafter all the child norms become candidates to
belong to the normative system, while the parent norm does not any longer.

Table I. IRON operators.

Operator Specification
add(NN , n) N ′ ← N ∪ {n}

δ′(n)← active
NN ′ ← 〈N ′, RG,∆, δ′〉

deactivate(NN , n) δ′(n)← inactive
NN ′ ← 〈N , RG,∆, δ′〉

generalise(NN , parent , children) N ′ ← N ∪ {parent}
R′

G
← RG ∪ {(ch, parent)|ch ∈ children}

δ′(parent)← active
δ′(ch)← inactive for all ch ∈ children
NN ′ ← 〈N ′, R′

G
,∆, δ′〉

specialise(NN , parent , children) δ′(parent)← inactive
for all child ∈ children

if (child , parent) ∈ RG

δ′(child)← active
NN ′ ← 〈N , RG,∆, δ′〉

4.5. A strategy to synthesise normative systems

Algorithm 2 describes in outline IRON’s overall norm synthesis strategy. Since IRON is
an on-line mechanism, at every tick it runs its strategy to perform the same three main
tasks of the BASE algorithm (Algorithm 1 in Section 3), namely: (i) norm generation;
(ii) evaluation of the current normative system; and (iii) refinement of the normative
system. However, IRON implements them differently, thus, for example, refinement
is done by means of specialisations, generalisations and deactivation of norms. Once
the strategy finishes, it returns the normative system represented by the normative
network.

ALGORITHM 2: IRON strategy

Input: 〈st−1, st〉,NN ,G, fapply , fconflict , µeff , µnec ,Θ, Tw

Output: Ω
[1] conflictDescription ← conflictDetection(st−1, st, fconflict);
[2] NN ← normGeneration(NN , conflictDescription ,G);
[3] P ← normEvaluation(NN , 〈st−1, st〉, fapply , fconflict , µeff , µnec , Tw);
[4] NN ← normRefinement(NN ,P ,G,Θ);
[5] Ω← {n ∈ NN |δ′(n) = active};
[6]return Ω

Algorithm 2 specifies IRON’s general strategy (Π). It is domain-independent and
takes as input: (i) a pair 〈st−1, st〉 containing descriptions of the system state at time
t − 1 and time t, respectively. This pair stands for a transition between the system
state at consecutive times. In fact, the differences between st−1 and st reflect the local
changes that occurred when the system evolved from t − 1 to t; (ii) a normative net-
work NN , which includes the current normative system Ω; (iii) a grammar G, including
the subsumption relationships between its terms; (iv) a function fapply to check norm
applicability in the current system state s; (v) a function fconflict to detect if a given

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:15

system state s is undesired; (vi) two evaluation functions µeff , µnec to assess the effec-
tiveness and necessity of norms in NN; (vii) Θ, a set of satisfaction degree thresholds
described below (see Equations 8, 9, 10 and 11) (Θ = {αgen

eff , αgen
nec , α

esp
eff , α

esp
nec}); and (viii)

a time period Tw.
The strategy is on-line and conflict-driven (since it is aimed to avoid undesired, con-

flicting states), and thus, at every tick, it starts by searching for conflicts in the current
system state. Function conflictDetection (line 1) uses the domain-dependent function
fconflict to assess if the current system state st is undesired (i.e., it detects undesired
states C ⊂ S). In case that st ∈ C, it returns a conflictDescription that incorporates de-
scriptions st−1 and st, together with the identifiers of those agents whose actions lead
to the undesired state st (for instance, in a traffic scenario, those cars that went for-
ward before colliding). Next, the normGeneration function (line 2) synthesises a norm
to avoid the transition from st−1 to st (though disregarding the generation of general
norms) in order to avoid it in the future. Subsequently, normEvaluation in line 3 eval-
uates norms in terms of their effectiveness and necessity as discussed in Section 4.3.
Finally, the norm refinement function in line 4 generalises and/or specialises norms
according to their effectiveness and necessity ranges during the time period Tw, as dis-
cussed in Sections 4.6 and 4.7, below. The algorithm outputs a normative system (line
6) for the agents in the domain that IRON is aiming at regulating.

The main functions in IRON’s strategy (i.e., in Algorithm 2) are specified in Algo-
rithms 3, 4 and 5. As previously mentioned, our proposal is to monitor the evolution
of the NMAS at regular time intervals (i.e., ticks) and apply operators under certain
conditions. Next, we present how previously defined operators are invoked in the three
main functions, which are specified as follows.

ALGORITHM 3: normGeneration

Input: NN , conflictDescription ,G
Output: NN

[1] if isEmpty(conflictDescription) then
[2] return NN

end
[3] n← generateNorm (G, conflictDescription);
[4] NN ← add(NN , n);
[5] potential [n]← potentialGeneralisations(n,G);
[6] return NN

ALGORITHM 4: normEvaluation

Input: NN , 〈st−1, st〉, fapply , fconflict , µeff , µnec , Tw

Output: P
[1] applicableNorms ← normApplicability(NN , 〈st−1, st〉, fapply);
[2] (F, I)← normCompliance(applicableNorms , fconflict);
[3] for n ∈ norms(F, I) do
[4] U [n]← updateUtilities(n, F, I, µeff , µnec);

[5] (Ě[n], Ň [n])← updatePerformanceRanges (n,U [n], Tw);

[6] P [n]← (Ě[n], Ň [n])
end

[7] return P

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:16 Morales et al.

ALGORITHM 5: normRefinement

Input: NN ,P ,G,Θ
Output: NN

[1] for n ∈ norms(F, I) do

[2] if underperforms(n, Ě, Ň , α
spec
eff , αspec

nec) then

[3] NN ← specialiseDown(NN , n, Ě, Ň , α
spec
eff , αspec

nec);

else

[4] NN ← generaliseUp(NN , n, Ě, Ň , α
gen
eff , αgen

nec);

end
[5] return NN

end

4.5.1. Generation of new norms. As mentioned before, IRON starts by detecting if the cur-
rent system state st is undesired or not. Function conflictDetection (line 2 in Algorithm
2) uses function fconflict to assess if st belongs to the set of undesired states C, st ∈ C.
Afterwards, if st is an undesired state, the norm generation function (line 2 in Algo-
rithm 2, and Algorithm 3) synthesises a new norm in order to avoid the transition from
st−1 to st in the future. Specifically, it firstly invokes function generateNorm (line 3 in
Algorithm 3), which employs the unsupervised CBR mechanism and the grammar G
together with subsumption relationships of its terms (see Section 4.1) to generate a
new norm aimed to avoid the transition from s−1 to st. Secondly, as line 4 in Algorithm
3 indicates, the newly created norm n is added to the normative network by invoking
the add operator. Thirdly, the norm generation function ends by creating all potential
generalisations (see Algorithm 6 in Section 4.6) for each newly created norm n (line 5).

Basically, the implementation of this generateNorm function is the same as for the
BASE approach described in Section 3 [Morales et al. 2011c]. The only difference is that
our synthesis process does not generate general norms, since the generalisation pro-
cess runs separately from norm generation. generateNorm is based on an unsupervised
Case-Based Reasoning (CBR) approach. Hence, this approach is based on the follow-
ing principle: if we can prevent a conflict in a given situation by enacting a norm, it
is likely that we can prevent a conflict in a similar situation by means of a similar
norm. Initially, when no other knowledge is available, norms are created based on the
following heuristic: the transition to an undesired state is caused by the actions of the
agents involved in that undesired state. Therefore, our generateNorm chooses one of
the agents involved in an undesired state st and gathers its context and performed
action in st−1. Then, the norm is synthesised so that this action is prohibited for any
agent encountering this same context. This is done with the aim of avoiding the previ-
ously resulting conflict in future situations. Obviously, there is no certainty about the
validity of this norm, and this is the reason IRON needs to continuously evaluate it in
the NMAS.

Our norm synthesis uses ground atomic formulae from the states, and focusses on a
specific agent to figure out its context ϕ (what it was able to perceive, given its position
in the grid) and the action ac it carried out (which possibly led to a conflicting state).
The synthesised norm 〈ϕ, prh(ac)〉 is thus made up of fully instantiated, non-negated
atomic formulae, establishing the specific context of one agent and its action which led
to a conflicting state. This process differs from induction of logical theories (e.g., induc-
tive logic programming [Muggleton and Raedt 1994; Nienhuys-Cheng and Wolf 1997])
in two important ways: i) the synthesised norm is specific with fully ground predicates
(so we do not need to perform inverse resolution to synthesise norms with variables);
ii) negated atoms do not play any role, as these are not represented in states.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:17

Note that implicit within our model is a reduction of deontic operators to prohibitions
that forbid actions in certain conditions. It is natural to ask whether this represents
a problematic restriction. But, notice that obligations and permissions are frequently
and naturally interpreted as dual notions: an action is obligatory if it is not permitted
to refrain from performing the action; and an action is permissible if it is not obliga-
tory to refrain from performing the action. In this case, obligations can be reduced to
prohibitions: to make an action obligatory, prohibit everything else. With this in mind,
our approach of focussing on prohibitions can be seen also encompassing obligations.
Of course, richer deontic operators (e.g., conditional obligations) have also been consid-
ered in the literature, and we do not claim that our approach encompasses a full range
of these: but with respect to core operators, our approach is sufficient.

Moreover, our approach can also handle permissions. We observe that the interpre-
tation of permissions can vary. For instance, we may have normative systems whereby
all actions are prohibited unless they are explicitly permitted. Alternatively, we may
have systems whereby all actions are permitted unless explicitly prohibited, and per-
missions are ways of encouraging certain behaviours. When dealing with obligations
and permissions, the undesired states are idealised situations which did not occur, and
the context of an agent is used to establish an obligation or permission on a missing
action (which would have reached the idealised situation).

4.5.2. Norm evaluation. As previously mentioned, the strategy updates the effective-
ness and necessity of norms by evaluating them individually. In general, IRON evalu-
ates a norm depending on the outcome (conflicts) that either its fulfilment or infringe-
ment lead to. Therefore, norm evaluation will solely consider the applicable norms that
have been either fulfilled or infringed by the agents in the NMAS in the transition from
two consecutive states in time.

The norm evaluation function is specified by Algorithm 4. Function normApplicability
(line 1) uses function fapply to assess the norms in the normative network (NN) that
were applicable at tick t−1. Thus, this function assesses the norms that are applicable
at state st−1. Next, function normCompliance (line 2) partitions the selected applica-
ble norms into fulfilled and infringed norms (F and I). Moreover, it uses a conflict-
detection function (fconflict) to determine which norms led to undesired states. As a
result, we obtain a partition of applicable norms into four multi-sets (sets that allow
duplicate values): (i) fulfilled norms that led to undesired MAS states (FC); (ii) fulfilled
norms that did not lead to undesired MAS states (FC̄); (iii) infringed norms that led
to undesired MAS states (IC); and (iv) infringed norms that did not lead to undesired
MAS states (IC̄). In the algorithm F = (FC , FC̄) and I = (IC , IC̄). These sets are the
ones used by function updateUtilities (line 4) to compute the effectiveness and necessity
of each norm at time t. In fact, this function implements the equations 2-5 given in
Section 4.3. Next, in line 5, function updatePerformanceRanges computes its effective-
ness and necessity ranges during a period of time Tw (see equations 6 and 7 of Section
4.3).

4.5.3. Normative system refinement. The final function in our strategy is the normative
system refinement, which yields a new normative system by transforming the norma-
tive network via specialisations and generalisations. Specifically, it specialises any
under-performing norms (lines 2-3 in Algorithm 5) while it tries to generalise those
norms that performed well (line 4). With this aim, the strategy keeps track of effec-
tiveness and necessity ranges of the norms in the normative network during a period
of time Tw. Then, the refinement task amounts to implementing the following rules:

— A norm is specialised (or deactivated if it has no children in the normative network)
provided that either its effectiveness or necessity have not been good enough during

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:18 Morales et al.

Fig. 2. Generalisation of n1, n2, n3, n4: norms n5 and n6 are active, while the rest are inactive, so the
normative system consists of Ω = {n5, n6}.

Tw. This occurs when the effectiveness or necessity of some of its children have not
been good enough either.

— A set of norms are generalised provided that: (i) they all relate to the very same norm
(parent) in the normative network; (ii) they are all the possible child norms of the
parent norm; (iii) their effectiveness and necessities have all been sufficiently high
during Tw.

The following subsections describe both processes in more detail.

4.6. Norm generalisation

Norm generalisation starts whenever IRON detects some norm that has performed well
during a period of time Tw. We say that a norm n has performed well during a period
Tw if the lower bounds of its effectiveness and necessity ranges are above some satis-
faction (generalisation) thresholds. This amounts to satisfying the following generali-
sation conditions:

Ěmin(n, Tw, C) > α
gen
eff (8)

Ňmin(n, Tw, C) > αgen
nec (9)

where Ěmin(n, Tw, C) and Ňmin(n, Tw, C) are the lower bounds of Ě and Ň that are
described in equations 6 and 7; αgen

eff ∈ [0, 1] and αgen
nec ∈ [0, 1] are the generalisation

thresholds for effectiveness and necessity.
Given a generalisable norm, the generalisation process is based on building all po-

tential generalisations for the norm to subsequently analyse whether each one of them
can be enacted or not. If a potential generalisation is enacted, it transforms the cur-
rent normative system into another one. Otherwise, the normative system remains
unchanged. Next, we illustrate: (i) how to build potential generalisations; and (ii)
how to enact potential generalisations. We illustrate our approach with norms n1–
n6 from Section 2, their effectiveness and necessity ranges listed in Table II, and
α
gen
eff = 0.5, αgen

nec = 0.4 as generalisation thresholds.

4.6.1. How to build potential generalisations. We now consider norm n3 described in Section
2. The first step to build a potential generalisation is to find a more general parent
norm. With this aim, our generalisation process employs a grammar G together with
subsumption relationships of its terms (see Section 4.1) to build predicates of the lan-
guage LAg. In our example, with the aid of the grammar, n5 would be built, which is
more general than n3 and thus can be a parent of a potential generalisation. The sec-
ond step is to find all the children of the parent. In our example, the children of n5,
(the siblings of n3), are n1 and n2. The triple 〈n3, n5, {n1, n2}〉 records a potential gen-
eralisation, that is, 〈n, n′, S〉, where n is a generalisable norm, n′ is a parent norm of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:19

Table II. Ě & Ň ranges for norms
in Figure 2

Ě Ň
n1 [0.6, 0.7] [0.5, 0.6]
n2 [0.7, 0.8] [0.6, 0.7]
n3 [0.8, 0.9] [0.5, 0.7]
n4 [0.7, 0.9] [0.6, 0.8]
n5 [0.6, 0.9] [0.5, 0.8]
n6 [0.6, 0.8] [0.6, 0.9]

n, and S is a possibly empty set of any other norms which n′ generalises (disregarding
n). The generalisation process now continues to build all potential generalisations. In
our example, the triple 〈n3, n6, {n4}〉 would be also built as a potential generalisation
of n3.

4.6.2. How to enact potential generalisations. A potential generalisation 〈n, n′, S〉 can be en-
acted if, and only if, all the siblings of n (the norms in S) belong to the normative
network (that is, they have been previously created by the norm generation process)
and satisfy all the generalisation conditions of equations 8 and 9. If these conditions
hold, the potential generalisation is enacted to transform the normative system. As an
example, consider the two potential generalisations 〈n3, n5, {n1, n2}〉 and 〈n3, n6, {n4}〉
and the normative network from Figure 2a showing n1, n2, n3 and n4 as active norms
(that is, we have a normative system Ω1 = {n1, n2, n3, n4}). From Table II, we observe
that norms n1, n2, n4 fulfil the generalisation conditions in equations 8 and 9, and so
does n3. Thus, the first potential generalisation can be enacted as follows: (1) norm n5

is created, added to the normative network, and activated; (2) n1, n2 and n3 are deac-
tivated in the normative network; (3) generalisation relationships are established be-
tween n1, n2, n3 and n5. This amounts to applying the generalise(NN,n5, {n1, n2, n3})
operator in Section 4.4. Analogously, we can enact the second potential generalisa-
tion by invoking generalise(NN,n6, {n4, n3}). Figure 2b shows the resulting norma-
tive network after both norm generalisations. It contains two active norms (n5, n6),
and four inactive norms (n1, n2, n3, and n4), that is, we have the normative system
Ω2 = {n5, n6}. These two norm generalisations reduce the size of the normative sys-
tem from 4 norms to 2, and the total number of predicates from 12 to 6 (improving its
compactness).

ALGORITHM 6: generaliseUp

Input: n, Ě, Ň ,NN , α
gen
eff , αgen

nec

Output: NN
[1] for 〈n, n′, S〉 ∈ potential [n] do

[2] if areGeneralisable(S, Ě, Ň , α
gen
eff , αgen

nec) then

[3] NN ← generalise(NN , n′, S ∪ {n})
end

end
[4] return NN

4.6.3. Generalisation algorithm. Norm generalisations are performed by the function
generaliseUp in Algorithm 6. Its inputs are a norm to generalise (n) along with its
effectiveness and necessity ranges (Ě, Ň), a normative network (NN), and the thresh-
olds to verify the generalisation conditions. For each potential generalisation of norm

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:20 Morales et al.

ALGORITHM 7: potentialGeneralisations

Input: n,G
Output: potential[n]

[1] let n = 〈ϕ, θ(ac)〉;
[2] Φ← general (ϕ,G);
[3] for ϕ′ ∈ Φ do
[4] n′ ← 〈ϕ′, θ(ac)〉;
[5] S ← generateChildren(n′,G, n);
[6] potential [n]← potential [n] ∪ {〈n, n′, S〉};

end
[7] return potential[n]

n (line 1), function areGeneralisable (line 2) verifies whether all norms in S (i.e, the
children of the generalisation) satisfy the generalisation conditions. If so, the operator
generalise(NN,n′, S ∪ {n}) (line 3) adds the parent norm to the normative network
NN and activates it, deactivates the child norms, and establishes generalisation rela-
tionships between child norms and parent norm. Additionally, the auxiliary function
potentialGeneralisations can be employed to generate all the potential generalisations
for a given norm n (indeed, as line 4 in Algorithm 3 shows, our strategy invokes this
function when creating the norm). First, it takes the precondition ϕ of a norm n (line
1) and employs function general (line 2) to obtain its parent preconditions Φ by using
grammar G together with subsumption relationships of the terms of LAg . Second, in
lines 3–4, for each parent precondition ϕ′ ∈ Φ it builds n′, a parent norm, based on the
general precondition ϕ′ and the same consequent θ(ac) from n (that is, n′ = 〈ϕ′, θ(ac)〉).
Next, function generateChildren(n′,G, n) (line 5) computes (using again grammar G and
subsumption term relationships) child norms of n′ disregarding n. Finally, in line 6, it
builds a new potential generalisation 〈n, n′, S〉 which is added to the potential general-
isations of norm n.

4.7. Norm Specialisation

Norm specialisations make it possible to refine generalisations of norms that do not
perform well during a period of time. Take the normative network depicted in Figure
3a with a single active norm, Ω1 = {n10}. The network contains norms n1, n2, n3 and
n5 (defined in Section 2), together with:

n7 : 〈{left(car), front(car), right(nil)}, prh(Go)〉

n8 : 〈{left(bike), front(car), right(nil)}, prh(Go)〉

n9 : 〈{left(private), front(car), right(nil)}, prh(Go)〉

n10 : 〈{left(vehicle), front(car), right(nil)}, prh(Go)〉

Norms n7 and n8 prohibit a car from proceeding whenever there is a car or a bike to
its left, a car in front and nothing to its right. Norm n9 is a generalisation of norms n7

and n8 to give way to private vehicles on the left, whereas norm n10 is a generalisation
of all norms from n1 to n9 to give way to any vehicle on the left. Recall from Section
4.1 that IRON uses a grammar to construct norms. Each norm contains a precondition
with three predicates left, front, right, and a postcondition with a prohibition to per-
form action Go. Notice that all norms from n1 to n10 are constructed by means of this
grammar. In Figure 3a, norm n10 is the only active norm, and we assume that all the
norms below n10 have been previously generalised to n10.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:21

Fig. 3. Specialisation of norm n10 into norms n5 and n7. a) Ω1 = {n10}, b) Ω2 = {n5, n7}

Norm specialisation starts out whenever IRON detects that some norm has under-
performed during a period of time Tw. We say that a norm n has under-performed
during a period Tw if the higher bound of its effectiveness range or the higher bound
of its necessity range are below the satisfaction (specialisation) thresholds provided in
the strategy (see Section 4.5). This amounts to satisfying either (or both) of the two
following conditions. 2

Ěmax (n, Tw, C) < α
spec
eff (10)

Ňmax (n, Tw, C) < αspec
nec (11)

where Ěmax(n, Tw, C) and Ňmax(n, Tw, C) are the higher bounds of Ě and Ň that are
described in equations 6 and 7. Let us suppose that norms n1, n2, n3, n5 and n7 have
performed well during a period Tw, but norms n8, n9 and n10 have not. This is a rea-
sonable assumption. Since n9 and n10 are more general than n8, they also apply in
the same situations in which n8 does. This means that the poor performance of n8

affects n9, whose performance affects in turn n10. In general, the performance of a
general norm is affected by the performance of the norms it generalises. Here, IRON

would choose the most general norm, n10, as the norm to specialise. The process would
start by invoking operator specialise. This operator first deactivates n10 and acti-
vates its child norms, n5 and n9. Next, IRON would attempt to specialise norms n5 and
n9. Since norm n5 has performed well, it would remain active. However, since norm
n9 has under-performed, it would be deactivated while its children (n7 and n8) would
be activated. Finally, the under-performing norm n8 would be deactivated and, since
it has no children (and n7 performs well), the specialisation process would finish. The
resulting network is the normative system Ω2 = {n5, n7} in Figure 3b.

4.7.1. Specialisation algorithm. In Algorithm 8 the function specialiseDown recursively spe-
cialises a norm n into its children until it reaches the leaves of the network. If the
norm is a leaf (line 1), it is deactivated so that it does not belong to the normative sys-
tem (line 2). Otherwise, operator specialise (line 4) specialises n by: (i) deactivating
it; and (ii) activating all its children. Next, each under-performing child norm is spe-
cialised down in turn (lines 5–7). As a result, the algorithm refines a generalisation by
deactivating those child norms that under-performed while keeping active those that
performed well. Notice therefore that our specialisation algorithm makes it possible to
perform a fine-grained backtracking over general norms that do not perform well.

2Notice that these conditions are highly conservative, since they require the higher value in the range for
period Tw to be below the threshold value. This is also the case for the generalisation conditions in equations
8 and 9, since in order to generalise the lower value in the range is required to be above the threshold.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:22 Morales et al.

ALGORITHM 8: IRON’s specialiseDown function

Input: n, Ě, Ň ,NN , α
spec
eff , αspec

nec

Output: NN
[1] if isLeaf (n) then
[2] NN ← deactivate(n,NN);

else
[3] Children ← getChildren(n,NN);
[4] NN ← specialise(NN , n,Children);

end
[5] for c ∈ Children do

[6] if underperforms(c, Ě, Ň , α
spec
eff , αspec

nec) then

[7] NN ← specialiseDown(c, Ě, Ň ,NN , α
spec
eff , αspec

nec);

end

end

4.8. Complexity analysis

Finally we are ready to analyse the computational complexity of IRON. Before that,
we will consider the number of norms that can be generated by a particular grammar
G. If p is the maximum number of predicates of any norm generated by the grammar,
r is the maximum arity of any predicate, and d is the maximum number of terms
at any position of any given predicate, the number of norms that can be generated
by grammar G is dr·p. Given a grammar G we shall note the number of norms it can
generate as ηG . Moreover, given a CBR base C, we shall note as ηC the number of
norms in the case base. Now we are ready to assess IRON’s complexity.

LEMMA 4.1. The norm synthesis performed by the IRON algorithm when employing
grammar G and case base C when detecting κ conflicts takes time O(κ · ηC + 3 · |Ag| ·
|NN |+ ηG(|Ag| · |NN |+ 1)).

PROOF. The norm generation stage involves (i) generating norms for all detected
conflicts and (ii) generating all potential generalisations for each new norm. The cost
of the first step is O(κ ·ηC), whereas the cost of the second step is O(ηG). The cost of the
norm evaluation process is O(3 · |Ag||NN |), since it involves assessing the applicability
of norms (O(|Ag||NN |)), assessing the compliance with norms (O(|Ag||NN |)), and up-
dating norms’ utilities and performance ranges (O(|Ag||NN |)). Finally, the cost of norm
refinement is O(ηG · |Ag||NN |), which amounts to the worst case cost of generalising
norms, since the cost of specialising norms is O(|Ag||NN |2). Putting all together, the
resulting worst-case time is O(κ · ηC + 3 · |Ag| · |NN |+ ηG(|Ag| · |NN |+ 1)).

Observe that the computation time of IRON is larger than BASE. Nonetheless, as we
will show in the experiments carried out in Section 5, this is the price paid by IRON in
order to significantly outperform BASE in terms of compactness.

As a final remark, notice that given a grammar G, the number of normative systems
is 2ηG . This is precisely the size of the search space that IRON must explore in search
for compact normative systems. However, we recall that IRON is an approximate algo-
rithm for norm synthesis, and it does not require exploring the whole search space, as
we will demonstrate in Section 5.

4.9. Architecture and computational model

We now have all the components of the architecture and computational model of our
norm synthesis system. Figure 4 illustrates the overall architecture of IRON.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:23

Fig. 4. IRON’s architecture

As we mentioned, IRON continuously searches on-line for a solution to the norm
synthesis problem, namely during the operation of a NMAS. We can thus regard IRON

as an external observer of agents’ interactions.
IRON has a domain independent abstract architecture which is composed of the

following domain independent elements: (1) a data structure to represent explored
norms, namely a normative network; (2) a set of operators to apply changes to the
normative network; and (3) a general, abstract strategy to perform norm synthesis for
any scenario. In order to perform norm synthesis for a given scenario, this domain in-
dependent machine receives as an input the following domain dependent elements: (i)
a function (fconflict) to detect undesired states; (ii) a grammar G to define norms; (iii) a
function to determine whether a norm applies to the agents in a given state (fapply); (iv)
evaluation functions to compute the effectiveness (µeff) and necessity (µnec) of norms
and normative systems; (v) the satisfaction degrees and thresholds (Θ); as well as (vi)
the time interval (T) considered when solving the NSP.

Our norm synthesis mechanism is composed of: (i) a normative network (NN) to
compactly represent the current normative system and to store the norms synthesised
(explored) so far; (ii) a control unit in charge of directing the NSP solving. The control
unit continuously perceives the target NMAS by describing the current MAS state.
After that, the control unit calls the strategy Π described in Section 4.5 to apply a
collection of operators O (see Section 4.4) and to eventually produce a new normative
system that prevents the conflicts observed in the current system state.

The normative system (Ω) is broadcast to the agents in the NMAS. Once the new
normative system is deployed, the control keeps on perceiving the MAS and generating
descriptions of states of the NMAS to be analysed by the strategy. This cyclic process
continues until the control unit receives from the strategy a normative system that is
evaluated effective and necessary enough, according to the evaluation functions and
satisfaction degrees set as input, during a period of time T . Such a normative system
will represent a solution to the norm synthesis problem.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:24 Morales et al.

5. EMPIRICAL ANALYSIS AND RESULTS

In this section we present an empirical evaluation of the IRON norm synthesis mech-
anism. Section 5.1 describes the experimental settings whereas Section 5.2 provides
results of the empirical evaluation; Sections 5.2.1 and 5.2.2 illustrate a stability anal-
ysis and a convergence analysis of IRON, respectively. Finally, Section 5.2.3 compares
IRON with BASE in terms of stability and compactness. We demonstrate that IRON is
more stable than BASE and synthesises normative systems that are more compact than
those synthesised by BASE.

5.1. Empirical settings

With the aim of comparing IRON with BASE, our experiments use the same traffic sce-
nario than the one used in [Morales et al. 2011c]. Our experiments simulate a traffic
junction composed of two orthogonal roads represented by a 20 × 20 grid (simulator
available in the on-line appendix). Each road has two 20-cell lanes (one per direction).

Fig. 5. a) Central area of the traffic junction. b) Agent context.

Figure 5a shows a 12 × 12 sub grid that corresponds to the centre of the junction.
Each agent is a car that travels along the grid at one cell per tick by following a ran-
dom trajectory. Specifically, each car enters the scenario from four possible start points
(light/green points in Figure 5a), and travels towards randomly chosen destinations
(exit points, depicted in dark/red in Figure 5a). In this particular scenario, undesired
states are those MAS states that contain collisions between cars. Thus, IRON will syn-
thesise norms to avoid collisions. Since IRON is devoted to avoid undesired states, we
consider a scenario that potentially leads to a large number of undesired states. There-
fore, in order to favour a high frequency of collisions (i.e., undesired states), we use a
high traffic density (from 41% to 48% of occupied cells) by having three cars entering
the scenario every tick. At each tick, each car decides whether to comply or not with
the norms output by IRON according to a probability, namely a norm infringement
rate. The norm infringement rate is fixed at the beginning of each simulation and is
the same for all cars.

Each experiment consists of a set of different simulations. IRON starts each sim-
ulation with an empty normative system 3; As the simulation progresses, collisions
among cars occur, and IRON then synthesises normative systems to avoid future col-
lisions. The simulation finishes whenever it reaches 50,000 ticks or IRON converges

3Notice however that IRON can also start operating with a non-empty normative system

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:25

to a stable normative system, hence removing undesired states and solving the norm
synthesis problem (NSP). We assume that IRON has converged to a normative system
if during a 10,000-tick period: (i) the normative system remains unchanged; and (ii) no
new (non-regulated) undesired MAS states are detected. Non-regulated conflicts are
those undesired MAS states that have not arisen from previous norm infringements.
That is, no agent infringed a norm during the transition from the previous state to the
undesired state. We assume that an undesired state that arises from a norm infringe-
ment is a regulated conflict (that is, a previously arisen undesired state that triggered
the generation of the currently infringed norm), and thus, it is not considered when as-
sessing convergence. This assumption is based on the intuition that we cannot ensure
that if the agents had fulfilled the norm, the undesired state would have arisen.

In order to generate norms, IRON receives as an input a grammar which
is as follows. The precondition of each norm contains three predicates
left , front , right , which represent the 3 cells in the context of a reference car
(see Figure 5b). Each predicate contains one term out of a set of six terms
{car-heading -left , car -heading -right , car -opposite-heading , car -same-heading , nil , anything}.
The first four terms represent a car along with the direction it is heading to,
while term nil represents no car and term anything represents both a car or
nothing. Furthermore, the following subsumption relationships for the terms
in the grammar hold: car -heading -left ⊑ anything , car -heading -right ⊑ anything ,
car -opposite-heading ⊑ anything , car -same-heading ⊑ anything , nil ⊑ anything . The
postcondition of each norm uses only prohibitions (θ = prh) over an action. The actions
available to agents are Ac = {Go, Stop}. Nevertheless, in this particular setting
car agents just perform action Stop whenever a norm prohibits them to go forward.
Therefore, the grammar that we employ can synthesise 63 = 216 different norms and
the number of normative systems to consider amounts to 2216 (> 1065). As an example,
in our experiments IRON generates norms of the form:

n : 〈{left(car-heading-right), front(car-heading-right), right(car-heading-right},prh(Go)〉

n′ : 〈{left(car-heading-right), front(car-heading-right), right(nil)},prh(Go)〉

Norm n prohibits a car from moving on (hence giving way) if the three cells in its
context contain cars, each heading towards its right. Similarly, norm n′ prohibits a car
from going if the left and front cells in its context contain cars heading towards its
right, and its right cell contains nothing. Notice that both norms n, n′ only differ in
their right position.

Regarding IRON’s configuration parameters, we have taken a conservative approach
to set them. This decision is intended to refine the normative system only when norms
are slightly effective or necessary. We set IRON’s parameters as follows: (i) low deac-
tivation thresholds (αspec

eff = 0.2, αspec
nec = 0.2) to only deactivate norms performing very

poorly; (ii) high generalisation thresholds (αgen
eff = 0.6, αgen

nec = 0.4) to only generalise

norms when performing very well; (iii) weights in equation (3) wAC
= 5 and wAC̄

= 1 to
ensure that norm fulfilments leading to collisions (ineffective norms) are much more
penalised than those avoiding collisions (effective norm); (iv) weights in equation (5)
wHI

= 2 and wSI
= 1 to ensure that norm infringements leading to collisions (harm-

ful infringements, necessary norm) obtain a much higher reward than those leading
to no collisions (successful infringements, unnecessary norm). Additionally, we com-
pute norms’ effectiveness and necessity range over a long period of |Tw| = 200 different
norm evaluations, and norms effectiveness and necessity values, namely µeff , µnec, are
initially set to a value k = 0.5.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:26 Morales et al.

5.2. Empirical results

We now analyse the results of our empirical evaluation. First, we perform a stability
analysis of IRON. We perform a micro analysis to study how IRON manages to solve
the norm synthesis problem, hence removing new collisions (i.e., non-regulated colli-
sions) in our traffic scenario. Additionally, we perform a macro analysis that shows
that IRON is able to converge despite a large proportion of non-compliant behaviours
in the overall agent population. Second, we compare IRON with BASE in terms of stabil-
ity and compactness. We show that IRON is more stable than BASE, since it converges
for greater norm infringement rates than BASE. Moreover, IRON manages to synthe-
sise more compact normative systems than those synthesised by BASE, decreasing the
overall number of norm predicates in the normative system.

5.2.1. Stability Analysis of IRON. We present a stability analysis to show how IRON man-
ages to successfully synthesise normative systems that solve the norm synthesis prob-
lem. We compute the stability degree as a convergence rate, namely the number of
simulations that converged to a stable normative system out of the total number of
simulations. We notice that since undesired states trigger norm synthesis, the lack of
collisions causes the normative system to remain stable.

We performed a simulation to show IRON’s convergence process. In particular, Fig-
ure 6 illustrates the normative changes (i.e., the time steps in which the the normative
network and/or the normative system change) for a single simulation with 0.3 norm
infringement rate. That is, on average, agents decide to infringe norms 3 out of 10

10

20

30

40

1 2 (tick=13)
3 4 5 6 7 8 (tick=43)
9 10 11 12 13 14 15 16 17 18 19 (tick=1375)

20 21 22 23 (tick=11375)Normative changes

Average collisions/tick
Normative network cardinality

Normative system cardinality
Number of normative system predicates

Fig. 6. Norm synthesis along a single simulation. The x-axis corresponds to normative changes (i.e., changes
in the normative network and/or the normative system), and the y-axis corresponds to the different mea-
sures in the legend.

times, which can be considered as a high enough norm infringement rate. This fig-
ure shows: (i) the average of new car collisions (i.e., collisions that are not caused
by norm infringements) per tick along time; (ii) the normative network cardinality,
namely the total number of synthesised norms; (iii) the cardinality of the normative
system, namely the number of active norms in the normative network; and (iv) the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:27

number of predicates in the normative system. At tick 13 (which corresponds to the
2nd normative change), the first collision arises and IRON synthesises the first norm.
From that tick onwards, IRON keeps generating norms when needed, hence increasing
the cardinality of both the normative network and the normative system. As a conse-
quence, the number of predicates in the normative system increases as well. At tick
43 (8th normative change), IRON performs the first norm generalisation, reducing the
cardinality of the normative system from 9 to 8 norms. As a result of this norm gen-
eralisation, the number of norms and predicates in the normative system decreases,
thus increasing its compactness. Up to tick 1,375 (19th normative change), IRON keeps
generating and generalising norms when possible. Norm generalisations reduce the
total number of predicates of the normative system. At tick 1,375 IRON performs the
last norm generalisation, hence synthesising a compact normative system of 5 norms
with 8 predicates in total. From tick 1,375 onwards, the normative system remains
stable. By using the resulting normative system, cars that comply with norms do not
cause collisions. However, those cars may collide with other cars that infringe norms.
Recall that those collisions that have arisen from norm infringements are not taken
into account when assessing convergence. After 10,000 further ticks, IRON reaches the
convergence criteria (tick 11,375 / 23th normative change). Overall, IRON explored 41
different norms (out of 125 possible ones), which were generalised into 5 norms, to find
a 5-norm normative system that successfully prevents collisions as long as cars comply
with norms.

Table III. A normative system upon convergence

Norm Pre-condition (θ) Modality µ̄eff µ̄nec

n1 left(car-heading-right) prh(Go) 0.86 0.90
n2 left(car-heading-left), front(car-heading-left) prh(Go) 0.87 0.73
n3 front(car-heading-right), right(car-heading-right) prh(Go) 0.86 0.81
n4 front(car-same-heading) prh(Go) 0.83 0.33
n5 front(car-heading-left), right(car-heading-left) prh(Go) 0.81 0.75

The 5-norm normative system that IRON converged to is shown in Table III. Norm
n1 is a left-hand side priority norm specifying that a car must stop when it observes a
car to its left which is heading to its right, and no matter what it perceives in front or
to its right. It has very high values of effectiveness (0.86) and necessity (0.90), since it
represents a situation that leads to collisions most of the times. Therefore, we consider
this norm as an essential norm. On the other hand, norm n4 forces a car to stop when it
observes a car in front heading in the same direction of the reference car. This situation
rarely leads to collisions, since the car in front rarely stops. As a consequence, its av-
erage necessity (µ̄nec) has a low value (0.33). We say then that this norm is preventive,
since agents should comply with it in order to avoid collisions that rarely occur.

We have thus shown that IRON can successfully synthesise a compact normative
system with high effectiveness.

5.2.2. Macro analysis. We now explore the limits of IRON by testing its synthesis capa-
bilities under different norm infringement rates. Specifically, we analyse IRON’s per-
centage of convergence for different norm infringement rates, ranging from 0.1 to 0.9.
We performed 100 simulations per norm infringement rate. Figure 7 shows averaged
results for the effectiveness and necessity of the synthesised normative systems4.

4For the sake of clarity, we do not plot standard deviations. However, it is worth mentioning that the stan-
dard deviations for effectiveness and necessity for each norm infringement rate are within [0.006, 0.011] and
[0.080, 0.0137] respectively.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:28 Morales et al.

0.2

0.4

0.6

0.8

1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Norm Infringement Rate (NIR)

Convergence degree
Effectiveness degree

Necessity degree
Variability degree

Fig. 7. Robustness analysis depending on norm infringements. The x-axis represents the different norm
infringement rates, and the y-axis represents the different degrees that are given in the legend.

Moreover, the convergence degree series shows the number of runs that converged to
a stable normative system out of the 100 runs. For low and medium norm infringement
rates (up to 0.4), IRON’s stability degree is 1, namely it successfully converged 100%
of the times. Furthermore, it converged to normative systems with high effectiveness
(0.88) and necessity (0.71). Between medium and high norm infringement rates (0.4
and 0.7), the convergence decreases (due to oscillations in the normative systems),
and it is for very high norm infringement rates (from 0.8 onwards, which means that
agents decide to infringe norms 8 or more times out of 10 times) that IRON cannot find
a normative system. Overall, IRON proved to be highly resilient to non-compliant be-
haviours during the synthesis process. IRON managed to successfully synthesise norms
despite up to 40% norm infringement rate of agents.

Figure 7 also shows the variability of IRON’s synthesis, namely whether it yields
different normative systems. Below the 0.4 norm infringement rate, the variability
remains near 0.2 (i.e., 100 executions converged to 20 different normative systems).
Since preventive norms become unstable (activated and deactivated back and forth)
with high norm infringement rates, IRON takes longer to synthesise stable norms.
This leads to new, different normative systems, which IRON did not need to explore
with lower norm infringement rates.

5.2.3. IRON versus BASE: Comparison of Stability and Compactness. Next we compare IRON

with BASE, the mechanism for norm synthesis described in Section 3. Our experi-
ments employ the publicly available version of BASE at [Morales et al. 2011b]. Our
comparison employs the same traffic scenario described in Section 5.1 above, and the
experimental settings for BASE described in [Morales et al. 2011c].

Stability degree. We first compare both norm synthesis approaches in terms of
their stability. We performed 100 simulations per norm synthesis method. Our
analysis is performed for very low (0.1) low (0.2), medium (0.3 to 0.6) and high (beyond
0.6) norm infringement rates. Figure 8 illustrates how normative systems change
along a single, sample simulation: the switch frequency between different normative

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:29

systems of BASE is much higher than IRON’s, which stabilizes normative systems
for longer periods of time until it converges. At the end of the simulation BASE

explored 251 different normative systems and was not able to converge, while IRON

explored 41 different normative systems, converging to a final normative system.
Additionally, Figure 9 compares the stability degree of both norm synthesis methods

0

50

100

150

200

250

300

 0 1000 2000 3000

N
S

 id
en

tif
ie

r

Tick

BASE IRON

Fig. 8. Normative system changes along time.

over 100 simulations. For very low norm infringement rates (0.1), both methods
successfully converge to a normative system that effectively coordinates the MAS.
Nevertheless, beyond low norm infringement rates (0.2), BASE dramatically decreases
its stability degree (i.e., it becomes more inefficient in synthesising a normative
system that avoids collisions). In fact, it never manages to converge to a normative
system beyond the 0.3 norm infringement rate, and collisions are never completely
eradicated, hence leading to a 0 stability degree. As for IRON, it converges for low
norm infringement rates and totally removes collisions 100% of the times. Still, for
medium norm infringement rates (0.3 to 0.6), its stability degree is between 0.9 and 1,
namely it converges between 90% and 100% of the simulations. The stability degree of
IRON tends to decrease beyond high norm infringement rates (0.6), and it is for very
high norm infringement rates (0.8) that it fails to converge. Overall, IRON is much
more stable than BASE, allowing to converge for much higher norm infringement rates.

Compactness savings. We now compare the compactness of the normative sys-
tems synthesised by IRON and BASE. Recall from Definition 5 that we measure the
compactness of a normative system in terms of its overall number of norm predicates.
Figure 10 illustrates the compactness savings achieved by IRON with respect to BASE:
it saves compactness for all norm infringement rates, achieving its best results for
medium norm infringement rates.

For low norm infringement rates, (up to 20% norm infringement rates) IRON man-
ages to converge to normative systems that are between 30% and 40% more compact
(have fewer norms) than those synthesised by BASE. As for medium norm infringement
rates (0.3 to 0.6), IRON obtains its best savings in compactness (up to 70%: from 36.2
down to 10.5 predicates on average). Here IRON benefits from its stability, whereas

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:30 Morales et al.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

bi
lit

y
de

gr
ee

Norm violation rate

Base IRON

Fig. 9. Comparison of the stability degree of IRON and
BASE

10%

20%

30%

40%

50%

60%

70%

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
om

pa
ct

ne
ss

 s
av

in
gs

Norm violation rate

Fig. 10. Compactness savings of IRON with respect to
BASE

BASE is penalised by its instability. This is due to the fact that, when BASE does not
converge, it typically outputs normative systems with a low compactness. Specifically,
while IRON manages to converge between 90% and 100% of the time, BASE just con-
verges 72% of the time for a norm infringement rate of 0.3, while it never converges
beyond 0.4 norm infringement rate. As a result, IRON synthesises normative systems
that are up to 70% more compact than those synthesised by BASE. As for high norm
infringement rates (beyond 0.6), IRON’s savings in compactness tend to decrease since
its percentage of convergence decreases as well. Overall, IRON synthesises normative
systems that are much more compact than those synthesised by BASE, allowing agents
to save computational resources when processing norms.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced IRON, an approach for the on-line synthesis of norms
for multi-agent systems. IRON is a domain-independent architecture and computa-
tional model composed of three abstract elements: (i) a normative network to repre-
sent the norms generated during the synthesis process; (ii) a set of operators to apply
changes to the normative network; and (iii) a strategy to perform norm synthesis.
One can use IRON to perform norm synthesis on different domains by implementing
relatively simple domain-dependent functions such as conflict detection and norm ap-
plicability.

We have performed an empirical evaluation of IRON on a simplified traffic junc-
tion scenario. In our scenario, cars are autonomous agents that drive through a junc-
tion to reach their destinations. The goal of IRON is to synthesise norms that prevent
cars from colliding. Our empirical results show that IRON significantly outperforms
BASE, the norm synthesis techniques presented in [Morales et al. 2011c]. On the one
hand, we have shown that IRON’s normative systems are up to 70% more compact
than those generated by BASE. On the other hand, we have also shown that unlike
BASE, IRON successfully synthesises normative systems despite high norm infringe-
ment rates. These improvements mainly derive from the fact that IRON takes more
informed and fine-grained decisions than BASE. This comes at the cost of employing:
(i) a generalisation function that requires complete evidence prior to perform norm
generalisations; and (ii) a specialisation function that allows to perform a fine-grained
backtracking of norm generalisations.

As future work, there are multiple opportunities for research. First, we plan to en-
rich our current scenario to include further traffic elements like pedestrians, cars driv-
ing at different speeds, or even traffic lights. Along this line, in [Morales et al. 2011a]

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:31

we already performed an empirical evaluation that compared how BASE and traffic
lights managed to regulate a traffic junction. We believe that it is worth pursuing this
line of inquiry. Second, we plan to enhance IRON to synthesise norms while considering
multiple goals at the same time, instead of a single goal as we do in this paper. For in-
stance, norms could be synthesised also considering the traffic flow. That is, IRON could
synthesise norms to (1) avoid car collisions; and (2) to avoid traffic jams. Notice that
this setting is specially interesting to be studied, since both goals are contradictory. On
the one hand, avoiding car collisions requires occasional car stops, which is prejudicial
for the traffic flow. On the other hand, undoing a traffic jam requires cars to start mov-
ing, which can lead to occasional collisions. Third, and finally, we plan to investigate
how to further improve compactness. This is motivated by our analysis of the norma-
tive systems synthesised by IRON. We have observed that several norms may apply to
the very same state. In particular, we have found two new types of relationships that
can be characterised as follows: (i) two norms apply to a state, but only one of them suf-
fices to regulate the state (the other one is therefore superfluous); and (ii) two norms
apply to a state, but they perform (in terms of effectiveness) worse together than sepa-
rately. The first type of relationship is directly related to over-regulation: regulating a
state with two norms, when only one of them is sufficient, implies to over-constrain the
behaviour of agents. Thus, removing one of them may decrease over-regulation, hence
increasing individual agents’ freedom. The second type of relationship captures a “con-
flict” between norms: the two of them together in the normative system decrease the
effectiveness of a normative system. From this discussion follows that capturing these
two relationships will help us improve compactness, and eventually effectiveness.

7. DISCUSSION

In what follows we focus on providing pragmatic guidelines to help potential users
decide when and how to employ IRON.

First, we analyse the requirements that a scenario, besides the traffic scenario de-
scribed in this paper, must satisfy in order to apply IRON:

— The norm generation approach employed by IRON is based on CBR and thus, it as-
sumes that similar problems (in our case, conflicts) have similar solutions (norms).

— MAS conflicts must be identifiable. Since IRON’s norm synthesis is based on the de-
tection of undesired states, it must be able to decide whether a state represents a
conflict or not.

— Agents’ actions must be observable and, in case they cause conflicts, these arise im-
mediately. IRON currently assumes that whenever a conflict arises at time t, the cause
of the conflict can be found at the action of an agent at previous time step t−1. More-
over, IRON also requires the agent causing the conflict to be involved in it at time
t.

— The number of agents involved in a conflict must be limited. Before IRON generates a
norm that successfully regulates a conflict, it may generate a different norm for each
of the agents involved in it. This approach is only feasible if the number of agents is
limited, and hence the number of possible norms to generate for a given conflict is
limited as well.

— The number of norms that the grammar employed by IRON can generate must not be
large. Recall that the computational complexity of IRON’s synthesis is linear with the
number of norms that a grammar can generate, but this number is exponential with
the number of predicates and their arity.

In this work we have used a simplified traffic scenario to illustrate IRON. However,
we argue that IRON can be employed in a vast variety scenarios whenever the condi-
tions above hold. As an example, in [Morales et al. 2014] we show how to apply IRON to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

2:32 Morales et al.

perform norm synthesis in an on-line community scenario. In that scenario, the users
of the community upload and view contents, and they complain about those contents
they find inappropriate for the community (e.g., spam, or porn contents). There, un-
desired states are those where a significant amount of users complain about a given
content. We showed that IRON is capable of synthesising norms that prevent users
from uploading conflicting contents.

Secondly, we focus on how to tune the parameters employed by IRON. The guidelines
that follow stem from a series of experiments that we conducted to understand the im-
pact of the specialisation and generalisation thresholds on IRON’s convergence. More
precisely, we ran the empirical evaluation described in Section 5, but this time com-
bining different specialisation thresholds (low, medium, and high values of αspec

eff , α
spec
nec)

with different generalisation thresholds (low, medium and high values of αgen
eff , α

gen
nec)5.

Two main observations derive from our analysis:

— The value of IRON’s specialisation (deactivation) thresholds directly impact on the
type of norms that become part of synthesised normative systems. On the one hand,
high specialisation thresholds lead IRON to include in a normative system those
norms that are highly effective and necessary. Therefore, those norms that regulate
situations that occasionally lead to conflicts (that is, that are slightly necessary) are
never included. Thus, we should use high specialisation thresholds when we aim at
very compact normative systems and we are ready to tolerate occasional conflicts.
On the other hand, low specialisation thresholds lead IRON to include in a normative
system any norm that avoids undesired states, even though the situation it regulates
very sporadically leads to conflicts.

— The value of IRON’s generalisation thresholds affect the compactness of synthesised
normative systems. On the one hand, high generalisation thresholds mean that only
those norms that are highly effective and necessary can be generalised. Since per-
forming norm generalisations is costly, this setting is appropriate in scenarios where
the cost of generalising norms is relevant. Thus, this setting guarantees that a norm
is only generalised when it performs well. On the other hand, low generalisation
thresholds allow IRON to generalise a norm even though its effectiveness and ne-
cessity values are low. This leads to increasing the compactness of the normative
system.

ACKNOWLEDGMENTS

Work funded by AT (CONSOLIDER CSD2007-0022), EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-
02), COR (TIN2012-38876-C02-01/02), MECER (201250E053) and the Generalitat of Catalunya (2009-SGR-
1434). Michael Wooldridge was supported by the ERC under Advanced Grant 291528 (“RACE”).

REFERENCES

Agnar Aamodt and Enric Plaza. 1994. Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. Artificial Intelligence Communications 7, 1 (1994), 39–59.

Cristina Bicchieri. 2006. The Grammar of Society: The Nature and Dynamics of Social Norms. Cambridge
University Press.

Ken Binmore. 2005. Natural Justice. Oxford University Press.

Guido Boella, Leendert van der Torre, and Harko Verhagen. 2006. Introduction to normative multiagent
systems. Computational & Mathematical Organization Theory 12, 2-3 (2006), 71–79.

George Christelis and Michael Rovatsos. 2009. Automated Norm Synthesis in an Agent-based Planning
Enviroment. In Proceedings of the 8th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS’09). IFAAMAS, 161–168.

5For the sake of keeping the paper length within reasonable limits, we did not incorporate this new set of
experiments with different threshold values, but we do report on our main findings.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

On-line Automated Synthesis of Compact Normative Systems 2:33

Frank Dignum. 1999. Autonomous agents with norms. Artificial Intelligence and Law 7, 1 (1999), 69–79.

David Fitoussi and Moshe Tennenholtz. 1998. Minimal social laws. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). John Wiley & Sons LTD, 26–31.

Andrés Garcı́a-Camino, Juan A Rodrı́guez-Aguilar, Carles Sierra, and Wamberto Vasconcelos. 2009. Con-
straint rule-based programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18, 1 (2009), 186–217.

Nathan Griffiths and Michael Luck. 2010. Norm Emergence in Tag-Based Cooperation. In 9th International
Workshop on Coordination, Organization, Institutions and Norms in Multi-Agent Systems. (COIN’10).
80–87.

James E Kittock. 1993. Emergent conventions and the structure of multi-agent systems. L. Nadel and D.
Stein, eds (1993).

John-Jules Ch. Meyer and Roel J. Wieringa. 1993. Deontic logic in computer science: normative system spec-
ification. John Wiley and Sons Ltd., Chichester, UK.

Javier Morales, Maite López-Sánchez, and Marc Esteva. 2011a. Evaluation of an automated mechanism
for generating new regulations. In Proceedings of the 14th international conference on Advances in ar-
tificial intelligence: spanish association for artificial intelligence (CAEPIA’11). Springer-Verlag, Berlin,
Heidelberg, 12–21.

Javier Morales, Maite López-Sanchez, and Marc Esteva. 2011b. Source code of Using experience to generate
new regulations. http://www.iiia.csic.es/∼jmorales/Downloads/Morales IJCAI2011 SourceCode.tar.gz.
(2011).

Javier Morales, Maite López-Sánchez, and Marc Esteva. 2011c. Using Experience to Generate New Regula-
tions. In International Joint Conference in Artificial Intelligence (IJCAI’11). AAAI Press, USA, 307–312.

Javier Morales, Maite López-Sanchez, Juan A. Rodrı́guez-Aguilar, Michael Wooldridge, and Wamberto Vas-
concelos. 2013. Automated Synthesis of Normative Systems. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’13). IFAAMAS.

Javier Morales, Iosu Mendizábal, David Sánchez-Pinsach, Maite López-Sánchez, and Juan A. Rodrı́guez-
Aguilar. 2014. Using IRON to Build Frictionless On-line Communities. AI Communications (To appear
in the special issue of the Catalan Conference of Artificial Intelligence) (2014).

Stephen Muggleton and Luc De Raedt. 1994. Inductive Logic Programming: Theory and Methods. Journal
of Logic Programming 19, 20 (1994), 629–679.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. 1997. Foundations of Inductive Logic Programming.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Christopher K. Riesbeck and Roger C. Schank. 1989. Inside Case-Based Reasoning. Lawrence Erlbaum As-
sociates, Hillsdale, NJ, US.

Norman Salazar, Juan A. Rodriguez-Aguilar, and Josep L. Arcos. 2010. Robust coordination in large con-
vention spaces. AI Commun. 23, 4 (Dec. 2010), 357–372.

Onkur Sen and Sandip Sen. 2010. Effects of social network topology and options on norm emergence. In
Proceedings of the 5th international conference on Coordination, organizations, institutions, and norms
in agent systems (COIN’09). Springer-Verlag, Berlin, Heidelberg, 211–222.

Sandip Sen and Stéphane Airiau. 2007. Emergence of norms through social learning. In Proceedings of the
20th international joint conference on Artifical intelligence (IJCAI’07). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1507–1512.

Yoav Shoham and Kevin Leyton-Brown. 2009. Multiagent Systems: Algorithmic, Game-Theoretic, and Logi-
cal Foundations. Cambridge University Press, New York.

Yoav Shoham and Moshe Tennenholtz. 1995. On social laws for artificial agent societies: off-line design.
Journal of Artificial Intelligence 73, 1-2 (February 1995), 231–252.

Munindar P. Singh, Matthew Arrott, Tina Balke, Amit K. Chopra, Rob Christiaanse, Stephen Cranefield,
Frank Dignum, Davide Eynard, Emilia Farcas, Nicoletta Fornara, Fabien Gandon, Guido Governa-
tori, Hoa Khanh Dam, Joris Hulstijn, Ingolf Krueger, Ho-Pun Lam, Michael Meisinger, Pablo Noriega,
Bastin Tony Roy Savarimuthu, Kartik Tadanki, Harko Verhagen, and Serena Villata. 2013. The Uses of
Norms. In Normative Multi-Agent Systems, Giulia Andrighetto, Guido Governatori, Pablo Noriega, and
Leendert W. N. van der Torre (Eds.). Dagstuhl Follow-Ups, Vol. 4. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 191–229.

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press,
Cambridge, MA, USA.

Daniel Villatoro, Jordi Sabater-Mir, and Sandip Sen. 2011. Social Instruments for Robust Convention Emer-
gence.. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11),
Toby Walsh (Ed.). IJCAI/AAAI, 420–425.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

http://www.iiia.csic.es/~jmorales/Downloads/Morales_IJCAI2011_SourceCode.tar.gz

2:34 Morales et al.

Adam Walker and Michael Wooldridge. 1995. Understanding the Emergence of Conventions in Multi-Agent
Systems.. In International Conference on Multiagent Systems (ICMAS’95). 384–389.

Chao Yu, Minjie Zhang, Fenghui Ren, and Xudong Luo. 2013. Emergence of Social Norms Through Col-
lective Learning in Networked Agent Societies. In Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’13). IFAAMAS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

Online Appendix to:
On-line Automated Synthesis of Compact Normative Systems

JAVIER MORALES, Artificial Intelligence Research Institute (IIIA-CSIC), Spain

MAITE LÓPEZ-SÁNCHEZ, University of Barcelona, Barcelona, Spain

JUAN A. RODRIGUEZ-AGUILAR, Artificial Intelligence Research Institute (IIIA-CSIC), Spain

WAMBERTO VASCONCELOS, University of Aberdeen, United Kingdom

MICHAEL WOOLDRIDGE, University of Oxford, United Kingdom

The source code of the IRON norm synthesis mechanism is available on-line in
http://www.iiia.csic.es/∼jmorales/Downloads/IRON.zip.

Finally, the traffic simulator employed in Section 5 to empirically evaluate IRON is
available in http://www.iiia.csic.es/∼jmorales/Downloads/TrafficSim.zip

c© 2015 ACM 1556-4665/2015/02-ART2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: February 2015.

http://www.iiia.csic.es/~jmorales/Downloads/IRON.zip
http://www.iiia.csic.es/~jmorales/Downloads/TrafficSim.zip

	Introduction
	Basic definitions and problem statement
	Basic definitions
	Research problem

	Background
	IRON: A Norm Synthesis Mechanism
	Grammar for norm synthesis
	A representation of normative systems
	Evaluating norms and normative systems
	Operators for normative networks
	A strategy to synthesise normative systems
	Generation of new norms
	Norm evaluation
	Normative system refinement

	Norm generalisation
	How to build potential generalisations
	How to enact potential generalisations
	Generalisation algorithm

	Norm Specialisation
	Specialisation algorithm

	Complexity analysis
	Architecture and computational model

	Empirical analysis and results
	Empirical settings
	Empirical results
	Stability Analysis of IRON
	Macro analysis
	IRON versus BASE: Comparison of Stability and Compactness

	Conclusions and future work
	Discussion

