
Fundamenta Informaticae 158 (2018) 277–295 277

DOI 10.3233/FI-2018-1649

IOS Press

Collaborative Rankings

Ewa Andrejczuk∗

Change Management Tool S.L., Barcelona, Spain

Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain

Universitat Autònoma de Barcelona, Bellaterra, Spain

ewa@iiia.csic.es

Juan A. Rodriguez-Aguilar
Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain

jar@iiia.csic.es

Carles Sierra
Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain

sierra@iiia.csic.es

Abstract. In this paper we introduce a new ranking algorithm, called Collaborative Judgement
(CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products,
exams, papers) as well as peer judgements over those opinions. The combination of these two
types of information has not been studied in previous work in order to produce object rankings.
Here we apply Collaborative Judgement to the use case of scientific paper assessment and we
validate it over simulated data. The results show that the rankings produced by our algorithm im-
prove current scientific paper ranking practice, which is based on averages of opinions weighted
by their reviewers’ self-assessments.

Address for correspondence: Campus UAB, 08193 Bellaterra, Spain
∗Supported by an Industrial PhD scholarship from the Generalitat de Catalunya (DI-060).

278 E. Andrejczuk et al. / Collaborative Rankings

1. Introduction

In many areas of our lives we are used to the process of assessing and being assessed. We pass
exams at the University, we go through job interviews, we undergo research project reviews, we are
evaluated by our employers, etc. Artificial Intelligence research has focused on the assessment process
for long and a number of algorithms have been developed to assist in assessing the performance of
humans or artificial agents. Indeed, large number of trust and reputation models have been proposed
[1, 2, 3, 4, 5].

Surprisingly, to our knowledge, no significant effort has been put in the development of algorithms
that use judgement information over such assessments. We consider exam marks unjust, interview
outcomes biased, and review reports unfair, and we normally comment about these opinions on our
performance with friends and relatives. We think that this kind of information is very important as
it can be key to build the reputation of assessors. A bad assessor can be detected by the assessing
community if they were allowed to simply express their opinions about the bad assessor. Actually,
in many social networks this kind of information is collected (“was this recommendation useful to
you?”), and presented to users. However, how the sites use this information to rank recommendations
is never clearly explained if it is used at all.

Similarly, in the area of multiagent systems, agents’ performance is key to build teams and coali-
tions [6]. Team formation and coalition formation are key for many applications related to multiagent
cooperation, e.g. RoboCup rescue team [7, 8], Unmanned Aerial Vehicles (UAVs) operations [9], or
team formation in social networks [10] to name just a few. Both team formation and coalition for-
mation focus on assembling the best possible group of agents (be it either a team or a coalition) to
accomplish some tasks of interest given some limited resources. Hence, it is key for these algorithms
to count on an assessment of the expected capabilities of the agents to recruit. With this aim, many
trust models have been developed in the past to model agent behaviour [11, 12], but judgements have
again never been used to our knowledge.

In this paper we present an algorithm, called Collaborative judgement (CJ), which wants to go
a step further in the use of peer judgements. CJ takes into account judgements on opinions to build
reputation values on assessors and then use them to aggregate the opinions of a group of assessors. In
current recommender systems the opinions about an object are often aggregated using weights. When
no weights are used, the final opinion is usually an average of all the opinions provided (e.g. Amazon
or TripAdvisor). When they are used the aggregated opinion is a weighted average using self-assigned
weights. This is very common in Conference Management Systems like Confmaster or Easychair. In
this paper we will compare CJ with the standard algorithm that weighs opinions with the assessors’
self-assessments. We will call this simple algorithm Self-Assessment Weighted Algorithm (SAWA).

Here we will particularize the problem of peer judgement to the case of Conference Paper review-
ing. The need to improve the way conferences (and to some extent journals) assess papers is key
for scientific progress and its pitfalls have been discussed recently, see for instance the NIPS exper-
iment: http://blog.mrtz.org/2014/12/15/the-nips-experiment.html. Some researchers
have been trying to ameliorate the situation by improving the paper assignment process [13]. How-
ever, there is a growing phenomenon in which reviews are not made nor supervised by the expert
members of the program committee but by someone to whom the reviewing task is delegated (e.g. a

E. Andrejczuk et al. / Collaborative Rankings 279

PhD student). This practice certainly invalidates the potential improvement provided by better assign-
ments. Here we propose to adapt CJ to detect those non-expert reviewers and dismiss their opinions
from the final decision on accepting a paper and thus keep the benefits of a better reviewer assignment.
Henceforth, the notation we will use will be based on the ontology of a conference: papers, reviewers,
marks, etc.

In many settings, including conference paper rankings, the actual numerical value is not the key
element but the order between alternatives. Also, this order is not always total as there can be ties
between objects (e.g. papers). Therefore, ranking algorithms including CJ have to deal with partial
rankings between alternatives.

This paper makes the following contributions. First, we define our ranking algorithm based on
collective assessments that uses both peer opinions of agents as well as peer judgements over these
opinions. We apply it to the case of scientific paper assessment. We compare paper evaluations’
accuracy with the currently most used paper evaluation method: the average of opinions weighted by
reviewer self-confidence. Finally, we experimentally compare the partial ranking among alternatives
produced by both methods and the “actual” ranking. The results show that the rankings produced by
our algorithm improve those produced with current ranking methods.

The paper is organised as follows. In section 2 we describe the generalisation of the Kendall Tau
distance to compare partial rankings. In Section 3 we present the ranking algorithm that we benchmark
in Section 6 against SAWA, presented in Section 4. Then, in Sections 7 and 8 we discuss the results
and summarise our main achievement and outline our future work.

2. Background: Metrics between partial rankings

In any conference management system, the opinions of reviewers are aggregated to produce a ranking
of papers. Notice that this ranking may include ties since several papers may be equally valued. An
ordering with ties is also known as a partial ranking. Given two different aggregation methods for
producing partial rankings, we are interested in comparing them to decide which aggregation method
is better. For this purpose, we require metrics to compare partial rankings. The purpose of this section
is to introduce such metrics. With this aim we largely rely on the work by Fagin el tal. [14]1 , which
provides sound mathematical principles to compare partial rankings. In particular, we will detail one
of the four metrics presented in [14], the so-called Kendall distance with penalty parameter p. Before
that, we require some preliminary definitions.

Definition 2.1. (Bucket order)
A bucket order is, intuitively, a linear order with ties. Formally, given a domain D, a bucket order is
a transitive binary relation C for which there are sets B1, · · · ,Bt (the buckets) that form a partition of
D such that xC y if and only if there are i, j with i < j such that x ∈ Bi and y ∈ Bj .

A bucket contains objects that are “tied”. We say that Bi is the bucket of x if x ∈ Bi. We say that
bucket Bi precedes bucket Bj if i < j. Thus, xC y if and only if the bucket of x precedes the bucket
of y.

1We refer the reader to [15] for a more detailed, extended version on the topic.

280 E. Andrejczuk et al. / Collaborative Rankings

Notice that a linear order is a bucket order where every bucket is of size 1.

Definition 2.2. (Bucket position)
Let B1, · · · ,Bt be a bucket order over D. The position of a bucket Bi in the bucket order is defined as
pos(Bi) = (

∑
j<i |Bj |) + (|Bi|+ 1)/2.

Intuitively, pos(Bi) stands for the average location within bucket Bi. Now, we can formally define
the notion of partial ranking based on the notion of bucket order.

Definition 2.3. (Partial ranking)
Given a domain D and a bucket order B1, · · · ,Bt over D, the partial ranking σ associated with the
bucket order is a function that maps each element in D to the position of its bucket, namely σ(x) =
pos(B) when x ∈ B.

Given a partial ranking σ, we say that x is ahead of y in σ if σ(x) < σ(y), and that x and y are
tied in σ if σ(x) = σ(y).

Now, let P = {{i, j}|i 6= j and i, j ∈ D} be the set of all the unordered pairs of different
elements inD. Given two partial rankings σ1 and σ2 with domainD, we will define a penalty measure
K̄

(p)
i,j (σ1, σ2) to account for the different ordering of i, j in partial rankings σ1,σ2, where p is a fixed

parameter such that 0 ≤ p ≤ 1. We shall distinguish three cases:

Case 1: i and j are in different buckets in both σ1 and σ2. (i) If i and j are in the same order in σ1
and σ2 (e.g. σ1(i) > σ1(j) and σ2(i) > σ2(j)) then K̄(p)

i,j (σ1, σ2) = 0, and thus there is no
penalty for {i, j}. (ii) If i and j are in the opposite order in σ1 and σ2 (e.g. σ1(i) > σ1(j) and
σ2(i) < σ2(j)) then let the penalty K̄(p)

i,j (σ1, σ2) = 1.

Case 2: i and j are in the same bucket in both σ1 and σ2. Since both partial rankings agree that i
and j are tied, there is no penalty and K̄(p)

i,j (σ1, σ2) = 0

Case 3: i and j are in different buckets in only one of the partial rankings. In this case, the penalty
is K̄(p)

i,j (σ1, σ2) = p.

Now we are ready to define the Kendall distance between two partial rankings.

Definition 2.4. (Kendall distance)
Given two partial rankings σ1 and σ2 over domain D, we define their K(p), their Kendall distance
with parameter p, as follows:

K(p)(σ1, σ2) =
∑
{i,j}∈P

K̄
(p)
i,j (σ1, σ2).

Notice that from the definition above, we can readily define a normalised version of the Kendall
distance that we will employ in this paper to compare partial rankings.

E. Andrejczuk et al. / Collaborative Rankings 281

Definition 2.5. (Normalised Kendall distance)
Given two partial rankings σ1 and σ2 over domain D, their normalised Kendall distance with parameter
p is defined as:

K̃(p)(σ1, σ2) =
K(p)(σ1, σ2)

s

where s = |P|·(|P|−1)
2 is the number of pairs in P .

Finally, notice that the work in [14] defines three further metrics to compare partial rankings, which
also admit efficient computation. However, it does not matter the metric that we choose because the
equivalence results in [14] indicate that the four metrics are all within constant multiple of each other.

3. Collaborative judgement

In this section we detail our collaborative judgement algorithm. Before that, we first introduce the
notation, which we will use in the rest of the paper.

Definition 3.1. An Appraisal is a tuple 〈P,R,E, o, v〉, where

• P = {pi}i∈P is a set of objects to be evaluated.

• R = {rj}j∈R is a set of reviewers.

• E = {ei}i∈E ∪ {⊥} is a totally ordered evaluation space, where ei ∈ N and ei < ej iff i < j
and ⊥ stands for the absence of evaluation.

• o : R× P → E is a function giving the opinions of reviewers on objects.

• v : R×R×P → E is a function giving the judgements of reviewers over opinions on objects.2

Therefore, a judgement is a reviewer’s opinion about another reviewer’s opinion.

In general we might have different dimensions of evaluation, that is a number of E spaces over
which to express opinions and judgements. For instance, originality, soundness, etc. Nonetheless, here
for simplicity reasons we will assume that the evaluation of an object is made over a single dimension.
Actually, the ‘overall’ opinion is what is aggregated in real systems.

The steps of the CJ algorithm applied over an appraisal 〈P,R,E, o, v〉 are as follows:

Step 1. Compute the agreement level between each pair of reviewers ri and rj as a function a :
R×R→ [0, 1]∪{⊥}. This computation involves the set of objects jointly reviewed by reviewers
ri and rj , which we will formally define as Pij = {pk ∈ P |o(ri, pk) 6= ⊥, o(rj , pk) 6= ⊥}. If
two reviewers jointly reviewed objects, then their agreement level is based on the similarities of

2In tools used to evaluate papers like ConfMaster (www.confmaster.net), this information could be gathered by simply
adding a private question to each paper review, answered with elements in E, one value in E for the judgement on each
fellow reviewer’s review.

282 E. Andrejczuk et al. / Collaborative Rankings

their opinions on common objects as well as on their judgements. Formally, we compute the
agreement level as:

a(ri, rj) =

∑

pk∈Pij
s(ri,rj ,pk)

|Pij |·d if Pij 6= ∅
⊥ otherwise

(1)

where d is the maximum distance in the evaluation space and:

s(ri, rj , pk) =

v(ri, rj , pk) if Pij 6= ∅ and v(ri, rj , pk) 6= ⊥
Sim(o(ri, pk), o(rj , pk)) if Pij 6= ∅ and v(ri, rj , pk) = ⊥
⊥ otherwise

(2)

Sim stands for an appropriate similarity measure. When no explicit judgements are given, we
use the similarity between opinions as a heuristic of their values. This is based on the following
assumption: the more similar a review is to my opinion, the better I am bound to judge that
opinion.

Step 2. Compute a complete Trust Graph as an adjacency function matrix C = {cij}i,j∈R such that:

c(ri, rj) =

a(ri, rj) if a(ri, rj) 6= ⊥

max
h∈chains(ri,rj)

∏
(k,k′)∈h

a(rk, rk′) otherwise (3)

where chains(ri, rj) is the set of sequences of reviewer indexes connecting i and j. Formally,
a chain h between reviewers i and j is a sequence 〈l1, . . . , lnh

〉 such that l1 = i, lnh
= j, and

a(rk, rk+1) 6= ⊥ for each pair (k, k + 1) of consecutive values in the sequence. To compute
this step we use a version of Dijkstra’s algorithm that instead of looking for the shortest path
(using + and min as mathematical operations), it looks for the path with the largest edge product
(using · and max as mathematical operators). The running time of the Dijkstra algorithm can
take O(n log n), where n = |R|, if using priority queues [16].

Step 3. Compute a reputation for each reviewer in R, {ti}i∈R. With this aim, we follow the notion
of transitive trust: If a peer i trusts any peer j, it would also trust the peers trusted by j. Since
this principle is employed by the Eigentrust algorithm [17], we use it to compute reviewer
reputations. The use of Eigentrust allows us to obtain a global trust value for each reviewer
by the repeated and iterative multiplication and aggregation of reputation values until the trust
grades for all agents converge to stable values. Note that the trust graph generated in step
2 is aperiodic and strongly connected as required by the Eigentrust algorithm. Furthermore,
we normalise the powers of the matrix C at each step to ensure its convergence. In vectorial
notation, the trust vector is assessed as t̄ = limk→∞ t̄

k+1 with t̄k+1 = CT t̄k and t̄0 = ē being
ēi = 1/|ē|. The complexity of the Eigentrust algorithm used in this step is O(|R|2).

Step 4. Compute the collective opinion on each object as a weighted average of the opinions of those
that expressed an opinion on the object. In other words, given an object pj , we only consider the

E. Andrejczuk et al. / Collaborative Rankings 283

opinions of those reviewers that reviewed pj , which we formally define as Rj ⊆ R,Rj = {r ∈
R|o(r, pj) 6= ⊥}. We can then compute the collective opinion on an object pj as a weighted
average of the opinions of the reviewers in Rj using as weights the reviewers’ reputations.
Finally, the collective opinion computed by our collaborative judgement algorithm for an object
pj , noted as oCJ(pj), is:

oCJ(pj) =

∑
r∈Rj

t̄r · o(r, pj)∑
r∈Rj

t̄r
(4)

where t̄r stands for the reputation value of reviewer r.

Step 5. Generate a partial ranking based on the set of collective opinions OCJ(P). CJ sorts objects
in descending order by the collective opinion values. Thus, the object with the highest value
of collective opinion gets the first ranking position. Objects with equal collective opinion re-
ceive the same ranking number, and the object(s) on the next position receive the immediately
following ranking number (i.e. bucket index). The procedure continues until CJ assigns bucket
indexes to all objects.

4. The self-assessment weighted algorithm

A conference management system is a web-based application that supports, inter alia, the evaluation
and selection of articles for scientific purposes (mainly conferences and to some degree journals). The
most common approach to paper evaluation used in systems such as Confmaster or Easychair is as
follows:

1. Assign every article to (normaly) three reviewers based on either keywords distinguished by
using word frequency analysis, and eventually their preferences expressed as bids.

2. Ask each reviewer to assess (give an opinion on) each of their assigned papers and also assess
their own confidence on each evaluation.

3. Determine the overall opinion on each paper as a weighted average of the opinions of the re-
viewers of the paper considering their self-assessed confidences as weights.

4. Build a (partial) ranking of articles based on the overall opinions.

We will refer to the algorithm above as the self-Assessment Weighted Algorithm (SAWA). Next,
we formalise how step 3 in SAWA computes the overall opinion on each paper. We assume that a
function κ : R × P 7→ [0, 1] keeps how confident each reviewer feels about their opinion on a paper.
Then, given a paper pj evaluated by a set of reviewers Rj , SAWA computes the aggregated opinion
on the paper as:

oSAWA(pj) =

∑
r∈Rj

κ(r, pj) · o(r, pj)∑
r∈Rj

κ(r, pj)
(5)

We rank articles in descending order according to values OSAWA(P) in the same way as in CJ.

284 E. Andrejczuk et al. / Collaborative Rankings

5. Motivating example

The purpose of this section is to illustrate how the CJ and SAWA algorithms described in sections
3 and 4 work to produce paper rankings. Before that, we introduce some matrix notation that will
help us describe CJ’s operation in a concise manner. Thus, let O : |P | × |R| be the opinion matrix;
A : |R| × |R| be the agreement level matrix; Vk : |R| × |R| the individual judgement matrix for paper
pk containing only direct judgements of reviewers; Sk : |R| × |R| the judgement matrix for paper pk;
C : |R| × |R| the trust matrix; and t̄ the reputation vector.

Now, say that there are only four papers to be reviewed P = {p0, p1, p2, p3} and four reviewers
R = {r0, r1, r2, r3} available to give their opinions on papers. Our objective is to choose two top-rated
articles out of P and compare CJ and SAWA rankings of the papers in P . We consider that reviewers
r0 and r1 are qualified, which means that they can recognize the value of a paper and rate it adequately.
Reviewers r2 and r3 provide unfair opinions as they are incompetent, but they can distinguish between
a good and a bad review, namely they can judge correctly. Every article is assigned to three reviewers
as follows:

• p0 is assigned to {r0, r1, r2},

• p1 is assigned to {r1, r2, r3},

• p2 is assigned to {r1, r2, r3},

• p3 is assigned to {r0, r1, r3}

We assume that all reviewers but r3 complete their reviews. Reviewer r3 did not evaluate article
p3. Based on the collected reviews, the opinion matrix O looks as follows:

O =

0.1 0.1 0.7 ⊥
⊥ 0.5 0.5 0.9

⊥ 0.6 0.7 0.4

0.9 0.9 ⊥ ⊥

For instance, the opinion of reviewer r3 on paper p2 is 0.4, namely the value of O[2, 3].
Besides reviews, each reviewer evaluates their own confidence on each of their reviews and judges

the reviews of other reviewers whenever they have papers in common. In other words, given a paper
pk, the reviewers in Rk judge one another. Thus, each individual judgement matrix Vk will contain
each reviewer self-assessment together with the reviewers’ judgements on other reviews of pk. Say
that the individual judgement matrices in our example are defined as follows:

V0 =

0.9 1.0 0.8 ⊥
1.0 1.0 0.8 ⊥
0.2 0.2 0.7 ⊥
⊥ ⊥ ⊥ ⊥

V1 =

⊥ ⊥ ⊥ ⊥
⊥ 0.9 1.0 0.6

⊥ 0.3 1.0 0.7

⊥ 0.2 0.7 0.8

E. Andrejczuk et al. / Collaborative Rankings 285

V2 =

⊥ ⊥ ⊥ ⊥
⊥ 0.9 1.0 0.7

⊥ 0.5 1.0 0.8

⊥ 0.3 0.1 0.6

V3 =

1.0 0.9 ⊥ ⊥
⊥ 1.0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

For instance, consider the individual judgement matrix V0. Reviewer r2 indicates that their self-

assessed confidence on their review of paper p0 is 0.7, namely the value of V0[2, 2]. Furthermore,
reviewer r2 judges the review made by r1 with a 0.2 value, namely the value of V0[2, 1].

At this point, we count on all the input information required by CJ and SAWA to perform paper
assessment and produce paper rankings. Next, in sections 5.1 and 5.2 we illustrate CJ’s and SAWA’s
operations respectively, while in section 5.3 we compare the rankings produced by both algorithms.

5.1. The collaborative judgement algorithm at work

We follow the steps for the CJ algorithm described in section 3:

Step 1. Compute the agreement level between reviewers. This requires that we compute first the
judgement matrices S0, S1, S2, and S3 for the papers in P using equation 2. CJ sets S0 = V0,
S1 = V1, and S2 = V2. As to V3, it finds that there is a missing judgement of r0 about r1 when it
comes to opinion about paper p3. Then, it calculates this missing judgement by considering the
difference in opinions between r0 and r1 on paper p3 using the following similarity measure:

Sim(o(ri, pk), o(rj , pk)) = 1− |o(ri, pk)− o(rj , pk)|

Hence, the final matrix of judgements for paper p3 looks as follows:

S3 =

1.0 0.9 ⊥ ⊥
1.0 1.0 ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

Now CJ can employ equation 1 to calculate the agreement level matrix:

A =

0.95 0.95 0.80 ⊥
1.00 0.95 0.93 0.65

0.20 0.33 0.90 0.75

⊥ 0.25 0.40 0.70

Step 2. Compute a complete trust graph. If we look at equation 3, we observe that we can readily

obtain most trust values from the agreement matrix A. In fact, we only miss the trust values

286 E. Andrejczuk et al. / Collaborative Rankings

between r0 and r3 (notice that a[0, 3] = ⊥ and a[3, 0] = ⊥ in the agreement matrix A). There-
fore, CJ only has to compute c(r0, r3) and c(r3, r0). Recall from section 3 that the missing
trust value for a pair or reviewers ri and rj is computed by finding the chain (path) of reviewers
connecting ri and rj with maximum trust product. Figure 1 shows a graph-based representation
of the agreement level matrix A, nodes stand for reviewers and a directed edge from ri to rj is
labeled with the agreement level between ri on rj , namely a(ri, rj).

0.9

r0

r2

r3r10.95

0.95

0.7
1.0

0.95

0.8
0.2

0.33
0.93

0.75

0.4

0.65

0.25

Figure 1: The graph representing the agreement level between reviewers.

Our algorithm finds that the missing agreement levels between r3 and r0 are:

• c(r0, r3) = 1.0 · 0.25 = 0.25 because the chain with maximum trust product is 〈r0, r1, r3〉
• c(r3, r0) = 0.75 · 0.93 · 0.95 = 0.663 because the chain with maximum trust product is
〈r3, r2, r1, r0〉.

By putting together the values of the agreement level matrix and the missing agreement levels
c(r0, r3) and c(r3, r0), we finally obtain the trust matrix C:

C =

0.95 0.95 0.80 0.66

1.00 0.95 0.93 0.65

0.20 0.33 0.90 0.75

0.25 0.25 0.40 0.70

Step 3. Compute a reputation value for each reviewer inR by using Eigentrust. Finally, the algorithm

computes the reputation values of each agent by applying Eigentrust with the C matrix obtained
at step 2 as an input.3 Eigentrust converges to the following reputation vector:

t̄ =
[
0.344 0.358 0.169 0.129

]T
3The matrix gets transposed to be used by the Eigentrust algorithm, therefore each reviewer reputation is represented by one
column

E. Andrejczuk et al. / Collaborative Rankings 287

Each row in t̄ represents a reputation value for each one of the reviewers in R. We observe that
the reputations of r2 and r3 are 0.169 and 0.129 respectively. Therefore, CJ found that these
two reviewers are not competent.

Step 4. Compute the collective opinion on objects as a weighted average of the opinions of those that
expressed an opinion. Having assessed the agents’ reputation, CJ can calculate the collective
opinion for each paper using equation 4. The resulting opinions for each paper are shown in
figure 2.

Step 5. Generate a partial ranking based on the set of collective opinions OCJ(P). CJ generates a
paper ranking that comes from ordering papers according to the opinion values in descending
order, as shown in figure 3.

5.2. SAWA at work

SAWA computes the opinion on each paper by combining the values in the opinion matrix O with
the self-assessed confidence of each reviewer in the individual judgement matrices V0, V1, V2, and V3,
namely with the value in the diagonals of these matrices. For instance, let us calculate the opinion
on article p2. This requires the opinions of reviewers r1, r2, and r3 on the article (O[2, 1] = 0.6,
O[2, 2] = 0.7, and O[2, 3] = 0.4). It also requires the confidence values of those reviewers in their
reviews, which are contained in matrix V2: V2[1, 1] = 0.9, V2[2, 2] = 1.0, and V2[3, 3] = 0.6 are
the confidence values of r1, r2, and r3 respectively on their own reviews on p2. Now, using equation
5, SAWA assesses the opinion on p2 as a weighted average of opinions using confidence values as
follows:

oSAWA(p2) =
0.6 · 0.9 + 0.7 · 1.0 + 0.4 · 0.6

0.9 + 1.0 + 0.6
= 0.592

The opinions for the rest of articles are shown in Figure 2 below.

5.3. Comparing rankings

Next we compare the paper rankings produced by CJ and SAWA with the ranking resulting from an
“oracle” that knows the true quality of the papers. Figure 3 shows the produced rankings based on the
opinions in Figure 2.

p0 p1 p2 p3

CJ 0.217 0.579 0.586 0.900

SAWA 0.262 0.619 0.592 0.900

True Quality 0.100 0.500 0.600 0.900

Figure 2: Opinions obtained by CJ and SAWA per paper together with their true quality values.

288 E. Andrejczuk et al. / Collaborative Rankings

Ranking

CJ {p3}, {p2}, {p1}, {p0}

SAWA {p3}, {p1}, {p2}, {p0}

True Ranking {p3}, {p2}, {p1},{p0}

Figure 3: Ranking produced by CJ and SAWA along with the ranking resulting from the papers’ true
qualities.

We observe that the ranking produced by CJ is the same as the oracle’s, while SAWA yields a
different ranking. This is because CJ exploited judgement information to find out that reviewers r2 and
r3 are bad reviewers (their reputation values are the lowest ones in t̄). This reduced the significance of
their opinions when evaluating article p1, and also increased the importance of the opinion of reviewer
r1, who is a good reviewer. As a result, the opinion on p2 is larger than the opinion on p1. Contrarily,
SAWA valued article p1 better than p2. This is because reviewer r3, a bad reviewer, evaluated better
p1 than p2 and reported a high self-assessed confidence value. As a result, p1’s opinion outperformed
p2’s despite p2 true quality is higher.

Our example tells us that a more informed algorithm (by adding judgements of opinions) helped us
discriminate good assessments from bad assessments. By all means this is just a toy example intended
to illustrate our algorithm. In what follows we perform a more substantial evaluation.

Before that, notice that our example only considered full rankings instead of partial rankings (rank-
ings with ties) to ease comprehension.

6. Experimental evaluation

The purpose of this section is to evaluate the CJ algorithm via simulation. With this aim, we benchmark
CJ and SAWA against an “oracle” that knows the true quality of papers. Our analysis will measure:

• the accuracy of the opinions and rankings produced by CJ and SAWA;

• the robustness of CJ against bad reviewers; and

• the sensitivity of global trust to bad reviewers.

Our study will confirm that CJ is the algorithm of choice to compute rankings on objects taking
into account peer opinions. Next, in section 6.1 we formulate the hypothesis that our experiments
pursue to validate. Section 6.2 describes our experimental settings and section 6.3 dissects the results
of the three experiments providing support to our hypotheses.

6.1. Hypotheses

In order to demonstrate that CJ is the algorithm of choice to compute rankings taking into account
peer opinions, the experiments that follow focus on validating the next hypotheses:

E. Andrejczuk et al. / Collaborative Rankings 289

H1 CJ evaluations get closer than SAWA’s to the true quality of a paper as the number of good
reviewers increase.4

H2 The rankings produced by CJ get closer to the true ranking than SAWA’s as the number
of good reviewers increase.

H3 Ceteris paribus, the better the reviewers, the better the accuracy (in terms of opinions and
rankings) of CJ with respect to SAWA.

6.2. Experimental settings

We assume a set P = {p1, . . . , pn} of papers and a function for their true quality in a range [0, 1],5 q :
P → [0, 1]. We use the following evaluation space E = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},
which is rather common in the context of paper reviewing.

(a) Beta distribution used to model
the difference between the opinion
of a good reviewer and the true quality

(b) Beta distribution used to
model a good reviewer
judging a bad reviewer

(c) Beta distribution used
to model a bad reviewer opinion

(d) Beta distribution used
to model a bad reviewer
judging a good reviewer

(e) Beta distribution used
to model a bad reviewer
judging a bad reviewer

Figure 4: Beta Distribution for different configurations of α and β parameters

4See next subsection for our representation of a good reviewer.
5Assessing the true quality of an object may be difficult and it is certainly a domain dependent issue.

290 E. Andrejczuk et al. / Collaborative Rankings

We use beta distributions to model reviewers’ opinions and judgements as it is an appropriate
distribution to simulate a behaviour that is subject to random variation and is limited on both extremes,
i.e. represents processes with natural lower and upper boundaries [18]. Depending on the α and β
parameters, the shape of the beta distribution changes substantially (see figure 4 below with different
configurations of both variables).

We model two types of reviewers: good and bad, with the following behaviour:

• Good reviewer. She provides fair opinions and fair judgements. Her opinion on any paper pk
is always close to its true quality q(pk). We assume that the absolute value of the difference
between the opinion of a reviewer and the true quality of a paper (as a percent) follows a beta
distribution, Beta(α, β), very positively skewed, for instance with α = 1 and β = 30. For each
paper pk reviewed by a good reviewer, we sample the reviewer’s associated beta distribution for
a percentage difference, apply it to the paper quality q(pk) (up or down randomly) and round
the result to fit an element in E. Her judgements on someone’s opinion are close to 0 if that
opinion is far from the true quality of the paper, and close to 1 otherwise. We implement this as
the following function:

v(ri, rj , pk) = 1− |o(rj , pk)− q(pk)|

and self-judgements from Beta(5, 2), slightly negatively skewed.

We assume that when a good reviewer judges a bad reviewer she samples a value in E from
a beta distribution rather positively skewed: Beta(2, 40). The intuition is that good reviewers
poorly mark bad reviews.

• Bad reviewer. She provides unfair opinions, because she is incompetent, but provides reasonable
judgements as she can interpret the opinions of others as being informative or not. Thus, we
sample opinions fromBeta(20, 12) —rather central with a slight negative skew, judgements for
good reviews and self-judgements from Beta(5, 2) as for good reviewers —negatively skewed,
and judgements on bad reviews from Beta(2, 5) —slightly positively skewed. The overall idea
is that bad reviewers stay mostly in the central area of the evaluation space.

We use Sim(x, y) = (|E| − 1 − |τ(x) − τ(y)|)/(|E| − 1) as a simple linear similarity function
where τ is a function that gives the position of an element in the ordered set E.

6.3. Results

In this section we present our experimental results using the settings described above.

6.3.1. Analysing the accuracy of opinions

Here we consider the accuracy of a collective opinion on a paper as the difference between that opinion
and the true quality of the paper. Then we compare the accuracy of the opinions computed by CJ
and SAWA as the percentage of good reviewers increases. We compute the accuracy of both CJ and

E. Andrejczuk et al. / Collaborative Rankings 291

SAWA as the mean absolute error of their opinions with respect to the true qualities using the following
expressions:

MAECJ =

∑
p∈P |oCJ(p)− q(p)|

|P |
MAESAWA =

∑
p∈P |oSAWA(p)− q(p)|

|P |

where q is a function that yields the true quality of each paper. Figure 5 plots the percentage error
reduction of CJ with respect to SAWA (computed as (1− MAECJ

MAESAWA
) · 100) by aggregating the values

obtained from 30 runs of each algorithm (each run samples all the distributions and thus generates
different collective assessments). Note that CJ outperforms SAWA, as it is much more resilient to bad
reviewers. As a matter of fact, as opposed to SAWA that treats all reviewers equally, CJ is designed to
detect bad reviewers and diminish the importance of their opinions by the usage of the reputation mea-
sure. We observe that CJ’s gains become larger than 20% and statistically significant for percentages
of good reviewers between 20% and 80%. Therefore, these results support hypotheses H1.

Figure 5: Accuracy of opinions: percentage of error improvement of CJ over SAWA.

6.3.2. Analysing the accuracy of rankings

Now we compare the accuracy of the rankings produced by CJ and SAWA with respect to the ranking
resulting from the true quality of papers. In order to compare two partial rankings we employ the
normalised Kendall distance in definition 2.5 with penalty factor p = 0.5. We employed the partial
rankings resulting from 30 runs of CJ and SAWA. We note by σCJ1 , . . . , σCJ30 the partial rankings
produced by CJ by σSAWA

1 , . . . , σSAWA
30 the partial rankings produced by SAWA, and by σq the

true ranking. Then, for each partial ranking computed by CJ and SAWA, we compute its normalised
Kendall distance with respect to the true ranking. On the one hand, we assess the average Kendall

distance of the rankings produced by CJ as KCJ =
∑30

i=1 K̃
(0.5)(σCJ

i ,σq)
30 . On the other hand, we assess

the average Kendall distance of the rankings produced by SAWA asKSAWA =
∑30

i=1 K̃
(0.5)(σSAWA

i ,σq)
30 .

292 E. Andrejczuk et al. / Collaborative Rankings

Figure 6 (left) plots the average Kendall distance of the rankings produced by CJ with respect
to the true ranking, namely KCJ , as the number of good reviewers increases. We observe that the
distance between CJ rankings and the true ranking quickly decreases as the number of good reviewers
increases. Notice that beyond 50% of good reviewers the distance drops below 0.1. That means that
CJ can produce rather accurate rankings despite the presence of a large ratio of bad reviewers.

Figure 6 (right) shows the accuracy gain of CJ with respect to SAWA. We calculate such accuracy
gain as KSAWA−KCJ

KSAWA
· 100. We observe that the accuracy gain yield by CJ as the number of good

reviewers grows, going beyond a 40% gain with 80% good reviewers. Similarly to experiment 6.3.1,
the graph clearly shows that CJ performs significantly better even when the number of bad reviewers
is high. We see that CJ has been able to discriminate poor assessments, while SAWA treats all reviews
equally. We observe also that CJ benefits larger from good reviewers than SAWA.

The results depicted in Figure 6 support hypothesis H2.

Figure 6: (Left) Normalised Kendall Ranking distance calculated for CJ ranking and true ranking of
the papers. (Right) Percentage of error decrease measured as a Kendall distance between rankings
produced by CJ and SAWA and true ranking of papers for increasing percentages of good reviewers.

6.3.3. Analysing the robustness against bad reviewers

As mentioned before, we model good reviewers’ opinions with a Beta(α, β) very positively skewed
from which we sample the difference between the reviewer’s opinion and the true quality. With α =
1 and β > 30 the expert is frequently telling the true quality in her opinions (specially because
we discretise the sampled values into our evaluation space —i.e. almost all the distribution mass is
rounded to a distance of 0 with respect to the true quality). In figure 7 we plot the improvement of CJ
with respect to SAWA for α = 1 and increasing values of β (better reviewer behaviour). We observe
that the algorithm outperforms SAWA by 10% when reviewer is frequently mistaken (β = 5). This
shows that even when good reviewers give frequently inaccurate opinions, CJ is still able to capture
them and increases the importance of their assessments. The improvement asymptotically grows to
51% with increasing quality of the reviewer behaviour. These results support Hypothesis H3.

E. Andrejczuk et al. / Collaborative Rankings 293

Figure 7: Improvement of CJ over SAWA as the reviewers’ quality increases (with fixed α = 1 and
increasing β values). This plot is for a population with 50% good reviewers and 50% bad reviewers.

7. Discussion

One issue worth discussing is the feasibility of getting real data to model q(·). We mentioned before
that this is obviously a domain dependent issue and that it can be difficult to obtain. In the case of
paper review, what is the true quality of a paper? It seems impossible to answer this question. We
could get data on impact of papers and assume that impact relates to quality. This can be done for the
papers that were accepted and published, but not for those that were rejected. Therefore, the validation
of the algorithm results will necessarily be partial. This will always be controversial as the use of any
quality metric would always be debatable. It is in this context that our algorithm contributes since the
key assumption of our algorithm is: when there is no clear-cut method to determine the quality of an
object, then the true quality can be determined by the social acceptance of the opinions expressed by
experts. Hence, the use of the best experts’ ranking can be understood as the ranking of the socially
most reputed experts. Precisely what CJ aims at modelling.

In terms of scalability, the current version of CJ uses Dijstra’s algorithm and matrix operations that
scale up reasonably well (quadratically), but there are improvements that can be done by distributing
the computation as in some versions of Eigentrust.

Another issue worth mentioning is that reviewer quality depends on the particular subarea of a
conference. In general, our opinions are more or less fair depending on our true competences. Thus, CJ
should consider this dimension as many existing trust models do [19, 6]. The inclusion of a semantic
dimension on trust and reputation requires defining an ontology of the domain and semantic distances
between the elements in the vocabulary. This represents no technical problem and will basically
increase the complexity of the computation proportionally to the granularity of the vocabulary.

Malicious agents can collude to artificially over rate their works. Eigentrust has extensions that
are robust against this collusion and can be used as an improvement of CJ [17].

294 E. Andrejczuk et al. / Collaborative Rankings

8. Conclusions and further work

In this paper we introduced CJ. It is a new ranking algorithm that takes into account peer opinions
of agents and/or humans as well as peer judgements over those opinions. We applied CJ to the use
case of scientific paper assessment and we validated it over simulated data. The results show that
the rankings produced by this new algorithm (under (reasonable) assumptions on reviewer behaviour)
improve current scientific paper ranking practice. The use of this algorithm in the context of agent team
formation is key as it will provide a sound method to assess the capabilities of agents by observing
peer opinions and judgements made by agents and humans.

Part of the future work is centred on evaluating CJ over real data. We are planning to get data from
a commercial bank about the skills of team members. That is, employees work in teams to solve tasks
that require specific skills. Team members record opinions on their team-mates’ skills and judgements
on the opinions after anonymisation. We are also discussing the extension of functionalities of a major
conference management system so that we can get data on judgements in conferences in the near
future.

At simulation level we want to further explore the sensitiveness of the results for varying parameter
settings, including the impact of different similarity functions. Finally, the modelling of malicious
reviewers (those who know the quality of a paper and deliberately lie about it) will be considered. We
expect that our method might help in detecting those reviewers.

Finally, this algorithm is an important milestone on our path to develop methods to build agent
and human teams to solve complex tasks that balance capabilities and mutual relationships.
Acknowledgments: This work is supported by the CollectiveMind project (Spanish Ministry of Econ-
omy and Competitiveness, grant number TEC2013-49430-EXP), the COR (TIN2012-38876-C02-01),
Collectiveware projects (TIN2015-66863-C2-1-R) and MILESS (Ministerio de Economa y Competi-
tividad) TIN2013-45039-P Financed by FEDER.

References

[1] Piech C, Huang J, Chen Z, Do C, Ng A, Koller D. Tuned Models of Peer Assessment in MOOCs. Proc.
of the 6th International Conference on Educational Data Mining (EDM 2013), 2013. arXiv:1307.2579
[cs.LG].

[2] de Alfaro L, Shavlovsky M. Crowdgrader: Crowdsourcing the evaluation of homework assignments. Tech.
Report 1308.5273, arXiv.org, 2013. doi:10.1145/2538862.2538900.

[3] Walsh T. The PeerRank Method for Peer Assessment. In: Schaub T, Friedrich G, O’Sullivan B (eds.),
ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), volume 263 of Frontiers
in Artificial Intelligence and Applications. IOS Press. 2014, pp. 909–914. ISBN 978-1-61499-418-3.

[4] Wu J, Chiclana F, Herrera-Viedma E. Trust based consensus model for social network in an incomplete lin-
guistic information context. Applied Soft Computing, 2015;35:827–839. https://doi.org/10.1016/
j.asoc.2015.02.023.

[5] Zhang J, Ghorbani AA, Cohen R. A familiarity-based trust model for effective selection of sellers in
multiagent e-commerce systems. Int. J. Inf. Sec., 2007;6(5):333–344. doi:10.1007/s10207-007-0025-y.

E. Andrejczuk et al. / Collaborative Rankings 295

[6] Osman N, Sierra C, McNeill F, Pane J, Debenham JK. Trust and matching algorithms for selecting suitable
agents. ACM TIST, 2013;5(1):16. doi:10.1145/2542182.2542198.

[7] Ramchurn SD, Farinelli A, Macarthur KS, Jennings NR. Decentralized Coordination in RoboCup Rescue.
Comput. J., 2010;53(9):1447–1461. doi:10.1093/comjnl/bxq022.

[8] Nair R, Tambe M, Marsella S. Team Formation for Reformation in Multiagent Domains Like
RoboCupRescue. In: Kaminka G, Lima P, Rojas R (eds.), RoboCup 2002: Robot Soccer World Cup
VI, volume 2752 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2003 pp. 150–161.
ISBN: 978-3-540-40666-2.

[9] Haque M, Egerstedt M, Rahmani A. Multilevel Coalition Formation Strategy for Suppression of Enemy
Air Defenses Missions. Journal of Aerospace Information Systems, 2013;10(6):287–296. https://doi.
org/10.2514/1.53860.

[10] Lappas T, Liu K, Terzi E. Finding a Team of Experts in Social Networks. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09. ACM,
New York, NY, USA. 2009 pp. 467–476. ISBN: 978-1-60558-495-9.

[11] Osman N, Gutierrez P, Sierra C. Trustworthy advice. Knowl.-Based Syst., 2015;82:41–59. https://doi.
org/10.1016/j.knosys.2015.02.024.

[12] Osman N, Sierra C, Sabater-Mir J. Propagation of Opinions in Structural Graphs. In: ECAI 2010 - 19th
European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings. 2010
pp. 595–600. doi:10.3233/978-1-60750-606-5-595.

[13] Charlin L, Zemel RS, Boutilier C. A Framework for Optimizing Paper Matching. CoRR, 2012. arXiv:
1202.3706 [cs.IR].

[14] Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E. Comparing and Aggregating Rankings with Ties.
In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’04. ACM, New York, NY, USA. 2004 pp. 47–58. ISBN: 158113858X.

[15] Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E. Comparing partial rankings. SIAM Journal on
Discrete Mathematics, 2006;20(3):628–648. https://doi.org/10.1137/05063088X.

[16] Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2nd edition, 2001. ISBN: 0070131511.

[17] Kamvar SD, Schlosser MT, Garcia-Molina H. The Eigentrust Algorithm for Reputation Management in
P2P Networks. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03.
ACM, New York, NY, USA. 2003 pp. 640–651. ISBN: 1-58113-680-3.

[18] Hill T, P L. Statistics: Methods and Applications. StatSoft, Inc., 2005. ISBN: 10:1884233597,
13:9781884233593

[19] Sierra C, Debenham JK. Trust and honour in information-based agency. In: 5th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006
pp. 1225–1232. doi:10.1145/1160633.1160855.

[20] Critchlow DE. Metric Methods for Analyzing Partially Ranked Data. Lecture Notes in Statistics 34.
Springer-Verlag New York, 1 edition, 1985. ISBN: 978-0-387-96288-7,978-1-4612-1106-8.

