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Abstract
We present the notion of Social Instruments as
mechanisms that facilitate the emergence of con-
ventions from repeated interactions between mem-
bers of a society. Specifically, we focus on two
social instruments: rewiring and observation. Our
main goal is to provide agents with tools that al-
low them to leverage their social network of in-
teractions when effectively addressing coordina-
tion and learning problems, paying special atten-
tion to dissolving metastable subconventions. Ini-
tial experiments throw some light on how Self-
Reinforcing Substructures (SRS) in the network
prevent full convergence, resulting in reduced con-
vergence rates. The use of an effective composed
social instrument (observation + rewiring) allow
agents to eliminate the subconventions that other-
wise remained meta-stable.

1 Introduction
The social topology that restricts agent interactions plays a
crucial role on any emergent phenomena resulting from those
interactions [Kittock, 1993; Delgado, 2002; Urbano et al.,
2009]. In the literature on emergent behavior in MAS, one
active topic is convention or norm emergence as a mechanism
for sustaining social order, increasing the predictability of be-
havior in the society and specify the details of those unwritten
laws. As conventions help agents to choose a solution from a
search space where potentially all solutions are equally good
(as long as all agents use the same), the selection of a coordi-
nation protocol, communication language, or the selection of
the task to be executed in a multitask scenario are pertinent
applications of conventions in MAS.

In social learning [Mukherjee et al., 2008; Sen and Airiau,
2007] of norms, where each agent is learning concurrently
over repeated interactions with randomly selected neighbors
in the social network, a key factor influencing success of an
individual is how it learns from the “appropriate” agents in
their social network.

A number of researchers from several communities (mul-
tiagent systems, physics, or economy) have studied the prop-
erties of underlying topologies in the convention emergence
process [Kittock, 1993; Shoham and Tennenholtz, 1997;

Urbano et al., 2009; Delgado, 2002; Delgado et al., 2003].
Most of these research consider a convention as emerged
when 90% of the population has converged to the same con-
vention. However, 90% convergence cannot, by definition, be
considered a convention, as a convention needs to be shared
by the complete population. Initial experiments have shown
us how the 90% convergence cannot be improved in specific
configurations, i.e. scale free networks.

Along this work we will analyse how agents can develop
meta-stable subconventions depending on their position in the
of interaction topology. As identified by several authors [Ep-
stein, 2000; Toivonen et al., 2009; Villatoro et al., 2009],
meta-stable subconventions interfere with the speed of the
emergence of more general conventions. The problem of sub-
conventions is a critical bottleneck that can derail emergence
of conventions in agent societies and mechanisms need to be
developed that can alleviate this problem. Subconventions
are conventions adopted by a subset of agents in a society
who have converged to a different convention than the ma-
jority of the population. Subconventions are facilitated by
the topological configuration of the environment (isolated ar-
eas of the graph which promote endogamy) or by the agent
reward function (concordance with previous history, promot-
ing cultural maintenance). Even though in some scenarios
and applications it could be possible, we assume the general
case where agents cannot modify their own reward functions,
and therefore the problem of subconventions has to be solved
through the topological reconfiguration of the environment.

As agents can exercise certain control over their social net-
work, they can improve one’s own utility or social status by
modifying it. We define Social Instruments to be a set of
tools available to agents to be used within a society to influ-
ence, directly or indirectly, the behavior of its members by
exploiting the structure of the social network. Social instru-
ments are used independently (an agent does not need any
other agent to use a social instrument) and have an aggregated
global effect (the more agents use the social instrument, the
stronger the effect). Specifically we focus on two social in-
struments:rewiring and observation. Rewiring allows agents
to control the links that relate them with other agents by re-
placing them intelligently. This direct control of the topol-
ogy of the social network allows agents to control whom they
interact with, resulting in increased reward without actually
altering the reward function. On the other hand, observa-



tion allows agents to obtain partial information of the con-
vention emergence process by observing other agents in the
neighborhood. The access to this information allows agents
to consider extra information over what they receive from di-
rect interactions. This observation process also has an impact
on the reward of the agents by speeding up their convention
emergence within the society.

The main contribution of this work is the usage of Social
Instruments as mechanisms that speed-up and ensure full-
convergence (100% of the population using the same con-
vention). Additionally, in the last part of the paper we argue
how a combined social instrument allows the dissolution of
subconventions in Scale-Free networks.

2 Proposed Social Instruments
2.1 Rewiring: Intelligent Link Removal and

Creation
The Rewiring social instrument allows an agent to remove
non-beneficial links with other agents, replacing them with
new ones. Agents decide to rewire a link after the number of
unsuccessful interactions1 with another agent crosses a cer-
tain Tolerance threshold. Agents also need to decide whom
they want to establish the new link with. We have developed
three different methods:
(1) Random Rewiring: Agents rewire to a randomly selected
agent from the population.
(2) Neighbour’s Advice: Agents rewire to an agent recom-
mended by a neighbour.
(3) Global Advice: Agents rewire to an agent that is randomly
selected by the system from those that have the same strategy.

There are some similarities of our work with that of Grif-
fith’s [Griffiths and Luck, 2010]. However, there exist a cru-
cial difference with our approach: they use an evolutionary
approach, observing the results of their techniques after the
reproduction of a number of generations, and with a certain
mutation rate. On the other hand, we use an online approach
where agents can modify their social network at runtime,
without evolving new generations. In addition, our rewiring
methods do not access any agent’s private information (used
only in the Global Advice which is used as a control case),
such as their actual reward values.

2.2 Observation
In a social learning scenario, allowing agents to observe the
strategy of other agents outside their circle of interaction can
provide useful information to support the convention emer-
gence process. However, there has to be a trade-off between
observing and interacting. In order to analyze the effects
of observation we will allow agents to observe, at certain
timesteps, a subset of other agents’ states in the population.
Therefore, agents will be assigned an Observation Probabil-
ity. Moreover, agents need to know the amount of agents
they can observe (Observation Limit) and how they want to
observe (Observation Method). We propose three different

1Unsuccessful interaction in our convention emergence scenario
corresponds to being uncoordinated or not sharing the same conven-
tion for that interaction.

observation methods:
(1) Random Observation: Agents observe random agents
from the society.
(2) Local Observation: Agents observe their immediate
neighbours in the social network.
(3) Random Focal Observation: Agents select one random
agent from the society and observe that agent and its direct
neighbors.

After the observation process, the agent will choose the
majority action taken by the selected observed agents and will
reinforce it.

Despite the similarity, this instrument and mimicking
([Hales and Arteconi, 2006]) behave differently. With ob-
servation, agents only access information that has been previ-
ously made public by the observed agent (agent’s last played
strategy), while with mimicking, they access information that
can be considered private (list of neighbours and decision
strategy function).

3 Model
The social learning situation for norm emergence that we
are interested in is that of learning to reach a social con-
vention. We borrow the definition of a social convention
from [Shoham and Tennenholtz, 1997]: A social law (a re-
striction on the set of actions available to agents) that re-
stricts agents’ behavior to one particular action is called a
social convention. For this reason, in our social learning sce-
nario norms are implicit. Agents do not have any internal
representation of norms, only preference for one action (the
one specified by the norm) over the others.

For the sake of generalization, our framework is built with
the most accepted convention emergence model (used by
[Delgado et al., 2003; Kittock, 1993; Mukherjee et al., 2008;
Sen and Airiau, 2007; Shoham and Tennenholtz, 1997;
Walker and Wooldridge, 1995]): agents converge to a conven-
tion through repeated bilateral interactions with other agents
from their social neighborhood. Any interaction between two
agents is represented as an 2-person m-action game. At each
time step, each agent is paired with another agent and inde-
pendently decide their actions. This decision is made without
observing the other agent’s identity or strategy. In our ap-
proach a social convention will be reached once all agents
are in the same state or consistently choose the same action
(the actual state reached or action chosen is immaterial).

As in several other research in convention emergence
([Delgado et al., 2003; Kittock, 1993]), the interactions be-
tween agents in our framework are constrained by one of two
different underlying structures: (i) a one-dimensional lattice
with connections between all neighbouring vertex pairs (reg-
ular network); and (ii) a scale-free network, whose node de-
gree distribution asymptotically follows a power law (irregu-
lar network).

As in [Kittock, 1993; Shoham and Tennenholtz, 1997;
Villatoro et al., 2009], agents are endowed a limited mem-
ory of past interactions (same size for all agents). Agents
save in their memory when an interaction occurred, the ac-
tion chosen, and the reward obtained. As we will see shortly,
this information is used differently depending on the type of



strategy decision procedure adopted.
Agents cannot observe the memory, current decision, or re-

ward obtained by the other agent, and hence cannot calculate
the payoff for an action before interacting with the opponent.

Once the model of interaction is fixed, we test our so-
cial instruments using three well-known strategy selection
rules: (1) Best Response Rule (BRR) [Mukherjee et al., 2008;
Sen and Airiau, 2007], (2) Highest Cumulative Reward Rule
(HCRR) [Shoham and Tennenholtz, 1997; Kittock, 1993],
and, (3) Memory Based Rule (MBR) [Villatoro et al., 2009].

The HCRR also specifies the action that each agent has to
take in each interaction. On the other hand, for BRR and
MBR, agents use the Q-Learning algorithm to estimate the
worth of each action, with an exploration rate of 25%.

4 Experiments
In order to reduce the search-space, some simulation param-
eters have been fixed: a population of 100 agents, with mem-
ory of size 5 (for HCRR and MBR), are located in a social
network with different topologies: a low clustered2 one di-
mensional lattice (lattice with Neighborhood Size = 10), a
high clustered one dimensional lattice (lattice with Neighbor-
hood Size = 30), and a scale free network.

Agents are initialized with no preference between the ac-
tions available and randomly choose actions with equal prob-
abilities. Presented results are averaged over 25 simulation
runs.

4.1 Effects of Rewiring
We have explored the search space of the Tolerance Levels
for the three rewiring methods, observing how it affects the
convergence time and the number of links rewired when con-
vergence is reached with the different strategy selection rules.

Influence of Rewiring Methods
In general, the Global Advice (GA) rewiring method produces
the best convergence time due to its centralized nature and
access to global information. Nonetheless the decentralized
methods, specially the Neighbour’s Advice (NA) method, also
show good performances. The NA method improves the Ran-
dom Rewiring (RR) method as it more expediently resolves
the subconventions that appear in the one-dimensional lattices
during the convention emergence process.

When using the Neighbour’s Advice method, these subcon-
ventions are resolved more expediently. Agents in the frontier
use the rewiring instrument as they cross the tolerance level
faster than those not in the frontier. For this reason, the RR
method relinks an agent with a more suitable agent with a
probability of 1

NumberOfActions . In contrast, the NA method
relinks the agent with another one with the same preference if
it is accessible. In case there is no other agent with the same
preference to connect with, random rewiring will be applied,
obtaining in the worst case scenario, the same results. These
results are applicable for the scale-free networks.

2Clustering Coefficient is a measure of degree to which nodes in
a graph tend to cluster together.

Influence of topology
When observing the effects of the topology, we find that the
convergence time is increased under the effects of rewiring
when the neighborhood size is increased.

On regular networks, the diameter of the network directly
affects the convergence times and the number of components.
This effect is due to the clustering coefficient of the network.
Lattices with higher neighborhood sizes are less fragmented
than those with more restricted neighborhoods. Therefore,
when increasing the neighborhood size, the number of links
between agents also increases, thereby increasing the cluster-
ing coefficient. Highly clustered societies are more resistant
to rewiring, as the node that wants to use the rewiring would
have to apply it to a higher number of nodes, and then, be
rewired to the same number of nodes with the appropriate
strategy.

Experimental results also show interesting properties with
Scale Free networks: when using the NA rewiring method
the number of components is significantly increased. As ex-
plained previously, rewiring is applied when two agents sur-
pass their tolerance of unsuccessful interactions and NA will
relink to a similar neighboring node. Because of the cluster-
ing coefficient of the Scale-Free networks3, NA will produce
the disconnection of subgraphs from the main graph.

We can conclude that rewiring performs better in low clus-
tered societies, producing a stratified population which results
in significant reduction in convergence time. In more clus-
tered networks, the tolerance level has to be chosen carefully
(depending on the experiment) to produce an effective tech-
nique for norm emergence.

4.2 Effects of Observation
In this section we analyze the effects of observation as a so-
cial instrument when used by agents. We test and compare
the three different methods proposed, exploring the search
space with a representative range of Observation Probabil-
ity values. To observe the effects of the different observation
methods, we fix the Observation Limit to 10 for the experi-
ments.

Influence of Observance Methods
Comparing the results from the three Observation methods
we observe that the Random (RO) and the Random Focal
Observation (RFO) methods are the most effective ones, and
have very similar results, when compared with the Local Ob-
servation (LO) method. The reason for this phenomenon is
to be found on the frontier effect. When agents use the LO
method, they observe their direct neighbours. If the observing
agent is in the frontier area, then, this observation is pointless.
However, observing different areas gives a better understand-
ing of the state of the world, and hence the RO and the RFO
methods perform better.

Influence of topology
For the BRR and MBR strategy selection rules, we have ob-
served that the different Observation methods produce a more

3The clustering coefficient distribution decreases as the node de-
gree increases.



pronounced effect in societies with higher diameters. We no-
tice that a small percentage of Observation drastically reduces
convergence times. The reason for this effect can again be
found in the frontier and the subconvention effect previously
discussed. Subconventions emerge more readily when the so-
cial network has a small diameter and the frontier region rep-
resents the unsettled area. These subconventions are more
easily resolved at these frontiers by observation rather than
by learning through interactions.

5 Combining Instruments: Solving the
Frontier Effect.

Our initial results together with the observations narrated
by other authors [Epstein, 2000; Toivonen et al., 2009;
Villatoro et al., 2009], convinced us that subconventions are
problematic obstacles to the emergence of global conven-
tions. These subconventions thrive because of the topolog-
ical structure of the network where they emerge. To achieve
the dissolution of subconventions, they need to be resolved in
what we identified as the “frontier” region.

Theoretically, a subconvention in a regular network is not
meta-stable, but unfortunately, slows down the process of
emergence. On the other hand, in other network types, such
as random or scale-free, subconventions seem to reach meta-
stable states4. Consequently, we have defined weak frontiers
as the ones that are not meta-stable in regular networks, and
strong frontiers as the ones generated in irregular networks.

By combining the social instruments presented in Sec-
tion 2, we have designed a composed instrument for resolving
subconventions in the frontier in an effective and robust man-
ner. This composed instrument allows agents to “observe”
when they are in a frontier, and then, apply rewiring, with the
intention of breaking subconventions. To effectively use this
combined approach, agents must first recognize when they
are located on a frontier. We have previously defined a fron-
tier as consisting of the group of nodes in the subconvention
that are neighbours to other nodes with a different convention
and that are not in the frontier with any other group. The most
important characteristic that defines a frontier is the existence
of a confrontation. Confrontation occurs when two agents in
an interaction do not share the same convention5.

Before proceeding further, we will define three characteris-
tics of agents with respect to their convention and topological
position in the network. An agent is in equilibrium if it has
the same number of neighbours in its own convention as in
the other convention. An agent is a weak node if the number
of neighbours in its own convention is lower than those in the
other, and an agent is a strong node otherwise (if the number
of neighbours in its own convention is greater than those in
the other).

4By experimentation, we have observed that around 99% of the
generated scale-free networks do not converge (to full convergence)
before one million timesteps with any of the decision making func-
tions used in this work.

5Not sharing the same convention, choosing a different action,
or choosing a different state to be, are considered equivalent expres-
sions for our purpose.

In regular networks, two confronted agents are in a fron-
tier region iff: (1) At least one of the confronted agents is
in an equilibrium position, and (2) all the neighbours of an
in-equilibrium confronted agent are strong nodes.

In irregular networks (such as scale-free topologies) we
have performed a more detailed analysis. By taking a snap-
shot at the end of the simulation of the emergence of such
networks, we can extract the regions of the network that re-
main meta-stable with a convention different than the general
convention. After compiling and studying those structures,
we identified an abstract substructure that we have defined
as Self Reinforcing Substructures (SRS). These substructures,
given the appropriate configuration of agents’ preferences, do
maintain subconventions. These abstract structures are of two
types, the Claw and the Caterpillar (see examples in Fig. 1),
and can be found as subnetworks of scale-free and random
networks.

The Claw SRS is formed by connecting a node with a num-
ber of hangers6 connected to it smaller than the number of
links with the rest of the network. In the situation where the
hangers coordinate to the same convention among themselves
and with the connecting node, we have a self-reinforcing
structure. For example, in Fig. 1(a), A is the central node,
having one connection with the rest of the network and 3
hangers: B (that it is another claw), C (plain hanger) and D
(chain’s connecting node).

The Caterpillar SRS is a structure formed by a central path
and from its members can hang other SRSs (such as claws,
chains, or plain hangers). For example, in Fig. 1(b), A, B, C,
and D are members of the central path, and the other nodes
reinforce them.

(a) Claw (b) Caterpillar

Figure 1: Self-Reinforcing Structures

As we have observed, the existence of these SRSS (74% of
the generated networks with the methods described in [Del-
gado et al., 2003] contain SRS) are the main reason why
convergence to a 90% level (as observed by [Delgado et al.,
2003]) is achieved relatively quickly, but overcoming the last
10% (containing the SRS) is much harder to achieve. In-
spired by a previous paper [Sen and Airiau, 2007], we have
performed a test varying the amount of players with a fixed

6A hanger is formed by nodes that are connected to a member
of a cyclic component, but which do not themselves lie on a cy-
cle [Scott, 2000], and a chain is a walk in which all vertices and
edges are distinct.
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Figure 2: Evolution of Conventions in Scale-Free Networks
with Fixed Players.

strategy to observe the dynamics of the emergence of con-
ventions. As shown in Fig. 2, the emergence of conventions
in scale-free networks follow the same behavioural pattern
amongst them with different amount of fixed players, follow-
ing a power-law distribution (as the node-degree distribution).
The emergence is achieved relatively fast for the majority of
the network, however, it is observed an important delay in the
rest, where SRSs are located.

By giving agents the instruments to dissolve these SRS7,
we hypothesize that convention emergence will be achieved
faster and full convergence rates will be obtained.

5.1 Results with Combined Instruments

We have conducted exhaustive experimentation with the com-
bined instrument on the three topologies and using the dif-
ferent decision making functions described in the previous
section. The use of the composed instrument on the regu-
lar networks does not produce an improvement on conver-
gence time with respect to simple rewiring (one example of
topology and strategy decision technique can be observed in
Fig. 3(a)). However, an important improvement is observed
in the number of rewired links (one example of this improve-
ment can be seen in Fig. 3(b)). In general, this improvement is
observed for lower tolerances. The reason of this effect is be-
cause for higher tolerances rewiring works in the same way as
the composed social instrument, but without observing. For
those smaller values, the effect is intense, reducing the num-
ber of rewiring links down to half of the original value.

On the other hand we observe an important improvement
for convergence times when using the composed instrument
(with the recognition of SRS) on irregular networks. The re-
sults presented in Figure 4 represent the average results from
25 different scale-free networks with and without using the
Combined Social instrument. By comparing Figure 4(a) and
Figure 4(b) we notice the tradeoff between the improvement
in convergence time and the amount of rewiring to be done.
The reason of this phenomena is because the Composed so-
cial instrument decomposes the SRS differently than the sim-
ple rewiring which only rewires the node in the actual frontier.

7An agent will use observation to realize it is part of a SRS, and
rewiring to dissolve it.

(a) Convergence Time

(b) Rewired Links

Figure 3: Comparison with Simple and Combined Social In-
struments on Regular Network using MBR.

(a) Convergence Time

(b) Rewired Links

Figure 4: Comparison with Simple and Combined Social In-
struments on Scale Free Network using BRR.



6 Conclusions and Future Work

We have introduced the use of Social Instruments as tools that
facilitate norm evolution. We have identified the character-
istics and opportunities for effectively utilizing these social
instruments for facilitating norm emergence through social
learning. Social instruments are attractive since they do not
require centralized monitoring or enforcement mechanisms,
normally are extremely easy to use, have very low computa-
tional costs, and are scalable to large systems.

Experimental results with the identified social instruments
have shown that the emergence of transitory subconventions
are the cause of the delay of the emergence of global conven-
tions. From results presented in this paper for the two simple
social instruments studied, we observe that the most effective
social instruments are those that more expediently solve this
subconvention formation problem in the frontier regions.

To the best of our knowledge, this is the first attempt
to achieve full convention emergence (100% of the popu-
lation in the same state/choosing the same action) in scale-
free networks. Other researchers [Kittock, 1993; Shoham
and Tennenholtz, 1997; Urbano et al., 2009; Delgado, 2002;
Delgado et al., 2003] in the same topic and using the same
type of topologies fixed their convergence rate to 90%, with-
out considering (and informing the readers) that the rest 10%
to achieve may not be possible to achieve, due to the pres-
ence of the identified SRSs. We have presented a composed
social instrument as a robust solution against the persistence
of subconventions in theoretical social networks, improving
the convergence times obtained with simple rewiring and fi-
nally achieving full convergence.

In a world where almost 950 million users belong to on-
line social networking platform (where virtual agents could
also exist)8, it is important to understand what mechanisms
these virtual entities should be equipped with to facilitate the
emergence of common conventions (for the sake of the whole
group) as quickly as possible. Moreover, as a system man-
ager, the results from this work highlights the harmful po-
tential of Self-Reinforcing Structures within the network for
delaying the emergence process, and draws our attention to
solutions for such critical problems.
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